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The New-Generation Pan-Peroxisome

Proliferator-Activated Receptor Agonist
IVA337 Protects the Liver From

Metabolic Disorders and Fibrosis

Guillaume Wettstein,' Jean-Michel Luccarini, Laurence Poekes,” Patrick Faye,1 Francine Kupkc:wski,1 Vanessa Adarbes,’
Evelyne Defréne,' Céline Estivalet,' Xavier Gawronski,' Ingrid Jantzen,' Alain Philippot,' Julien Tessier,"
Pascale Tuyaa—Boust:ugue,1 Fiona Oakley,3 Derek A. Mann,’® Isabelle Leclercq,2 Sven Francque,4 Irena Konstantinova,’

Pierre Broqua,1 and Jean-Louis Junien'

IVA337 is a pan-peroxisome proliferator-activated receptor (PPAR) agonist with moderate and well-balanced activity on
the three PPAR isoforms (a, y, §). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibro-
genesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic stea-
tohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to
liver fibrosis and cirrhosis. Clinical results have demonstrated variable improvements of histologically assessed hepatic
lesions depending on the profile of the tested drug, suggesting that concomitant activation of the three PPAR isoforms
would translate into a more substantial therapeutic outcome in patients with NASH. We investigated the effects of
IVA337 on several preclinical models reproducing the main metabolic and hepatic features associated with NASH. These
models comprised a diet-induced obesity model (high-fat/high-sucrose diet); a methionine- and choline-deficient diet; the
foz/foz model; the CCly-induced liver fibrosis model (prophylactic and therapeutic) and human primary hepatic stellate
cells. IVA337 normalized insulin sensitivity while controlling body weight gain, adiposity index, and serum triglyceride
increases; it decreased liver steatosis, inflammation, and ballooning. IVA337 demonstrated preventive and curative effects
on fibrosis in the CCl; model and inhibited proliferation and activation of human hepatic stellate cells, the key cells driv-
ing liver fibrogenesis in NASH. Moreover, IVA337 inhibited the expression of (pro)fibrotic and inflammasome genes
while increasing the expression of f-oxidation-related and fatty acid desaturation-related genes in both the methionine-
and choline-deficient diet and the foz/foz model. For all models, IVA337 displayed an antifibrotic efficacy superior to
selective PPARa, PPARS, or PPARy agonists. Conclusion: The therapeutic potential of IVA337 for the treatment of
patients with NASH is supported by our data. (Hepatology Communications 2017;1:524-537)

IntrOduction such as cirrhosis and hepatocellular carcinoma.?

NASH is now becoming a leading cause of liver trans-
onalcoholic ~ steatohepatitis (NASH) is a plantation in developed countries. Although not fully
highly prevalent, multifactorial, and multi- understood, it is widely accepted that insulin resistance
step disease associated with increasing risk of ~and steatosis play key roles in the pathogenesis of the

cardiovascular mortality and severe liver conditions, disease. Because lifestyle change provides limited

Abbreviations: a-SMA, alpha smooth muscle actin; CPT, carnitine palmitoyltransferase; ECsq, 50% effective concentration; Emax, maximal effect;
HF/HS, high fat/high sucrose; HFD, high-fat diet; hHSC, human hepatic stellate cell; PPAR, peroxisome proliferator-activated receptor; HSC, hepatic
stellate cell; IL, interleukin; MCD, methionine-choline-deficient; MIMP, matrix metalloproteinase; MUFA, monounsaturated fatty acid; NAS, nonalco-
holic fatty liver disease activity score; ND, normal diet; NF-kB, nuclear factor kappa B; NLRP3, NOD-like receptor family, pyrin domain containing
3; PDGF, platelet-derived growth factor; po, per os; PPAR, peroxisome proliferator-activated receptor; SCDI, stearoyl-coenzyme A desaturase-1;
TGF-p, transforming growth factor beta; TGF-pR, transforming growth factor beta receptor; TIMP, tissue inhibitor of metalloproteinase.
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improvement and because of lack of approved medica-
tion, discovering new efficacious therapies is of high
interest.

Peroxisome proliferator-activated receptors (PPARs)
are ligand-activated nuclear receptors that function as
master regulators in adipose tissue and the liver. They
overall control insulin sensitivity, glucose, and lipid
metabolism as well as inflammation and fibrogenesis.”**¥
The PPARy isoform is highly expressed in adipose tis-
sue; its activation promotes adipocyte differentiation,
increases glucose uptake and triglyceride storage (hence
reducing free fatty acid flux to the liver), and increases
secretion of the anti-inflammatory cytokine adiponec-
tin.®® The PPARy isoform, which is highly expressed
in hepatocytes, controls fatty acid transport and f-
oxidation and dampens the inflammatory response.”"®
The PPARGY isoform (also known as PPARS) contrib-
utes to the regulation of glucose and lipid metabolism
while exerting anti-inflammatory properties in the liver
by skewing M2 polarization of Kiipffer cells.*™"
PPARy and PPARJ are expressed at various levels in
hepatic stellate cells (HSCs), a driver of liver fibrosis;
PPARYy is key in keeping HSCs in a quiescent nonfibro-
genic state. 1419

A protective role of PPAR agonists has been dem-
onstrated in preclinical models of nonalcoholic fatty
liver disease/NASH as well as in patients with NASH.
The selective PPARa agonist Wyl14,643 improved
steatosis, inflammation, and fibrosis in mice receiving a
methionine- and choline-deficient (MCD) diet and

improved metabolic  disorders,  steatosis, and
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ballooning in high-fat diet (HFD) fed foz/foz
mice."!> In patients, the PPARx agonist fenofibrate
had limited efficacy on NASH but a significant effect
on hepatocyte ballooning.*® Some but not all PPARS
agonists have had beneficial effects in preclinical mod-
els of NASH."7'® Elafibranor (GFT505), which
combines PPARo and PPARG activation, improved
metabolic disorders and reduced the severity of steato-
hepatitis and fibrosis in several animal models and in
patients with NASH."? Selective PPARy activation
by pioglitazone or rosiglitazone improved insulin resis-
tance and reduced steatosis, inflammation, and fibrosis
in animal models and in patients with NASH.@%2"
Taken together, these results indicate that activation of
each of the three PPAR isoforms individually provides
therapeutic benefit to patients with NASH. Combin-
ing PPAR«, PPARJ, and PPARy activation may
therefore bring an innovative and efficacious therapeu-
tic approach by targeting a larger array of disturbances
that contribute to the development and progression of
NASH.

IVA337 is a next-generation pan-PPAR agonist
designed to produce moderate and well-balanced activa-
tion of the three PPAR isoforms. This unique agonist
profile translates into an excellent efficacy and safety pro-
file with no hemodilution, heart weight gain, or creati-
nine increase (manuscript under preparation) in
preclinical models as well as in clinical phase 1 and 2a
studies in patients with type 2 diabetes (manuscript
under preparation). The aim of the present study was to
assess the effects of IVA337 in preclinical models
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reflecting the most important pathologic processes and
phenotypic characteristics of NASH from insulin resis-
tance, steatosis, inflammation, and ballooning to fibrosis.
The effect of IVA337 on the proliferation and activation

of human HSC:s in vitro was also investigated.

Materials and Methods
ANIMAL MODELS

All experiments were performed in accordance with
the Association for Assessment and Accreditation of
Laboratory Animal Care accreditation of our animal
facilities.

High-Fat/High-Sucrose Diet

C57B16/] mice (4 weeks of age; approximately 20 g)
received a diet enriched with 34.9% fat and 13%
sucrose (D03062301; Research Diets) or a normal diet
(ND) for 8 weeks. Mice were then randomized accord-
ing to their body weight, serum glucose, and insulin
levels to receive either the vehicle or IVA337 at 3, 10,
or 30 mg/kg body weight (n =10 per group) adminis-
trated per os (po) once a day together with a high-fat
(HF)/high-sucrose (HS) diet for 4 weeks.

MCD Diet

C57Bl6/] mice (6 weeks of age; approximately 25 g)
received an MCD diet together with either vehicle (meth-
ylcellulose 1% + poloxamer 0.1%) or IVA337 (10 or

30 mg/kg) po once a day (n = 10 per group) for 3 weeks.
foz/foz Model

Six-week-old Alms1 mutant foz/foz mice were fed
an HFD (60 kcal% fat; D12492; Research Diets) or an
ND for 6 weeks. A group of mice were killed to exam-
ine their pathologic status; the remaining mice were
randomized to receive the HFD alone (n = 10) or with
IVA337 at 75 mg/kg of diet (n = 10) or 200 mg/kg of
diet (n=12) for another 6 weeks. The ND group
(n = 8) stayed on the ND regimen for another 6 weeks.

CCl -Induced Fibrosis

In a prophylactic setup, C57B16/] mice (6 weeks of
age; approximately 25 g) received 100 puLL of either sun-
flower seed oil or CCly (3.5mL/kg diluted in sun-
flower seed oil) intraperitoneally twice a week for 3
weeks. Rosiglitazone (PPARy agonist; 5mg/kg) or
IVA337 (30 mg/kg) were administered po once daily
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on top of CCly for 3 weeks (n =28 per group). In a
therapeutic design, mice received CCly for 3 weeks to
initiate liver fibrosis. Treatment, i.e., vehicle, IVA337
(10 or 30 mg/kg), rosiglitazone (5 mg/kg), fenofibrate
(PPAR« agonist; 100 mg/kg), or GW501516 (PPARS
agonist; 10 mg/kg), was then administrated per daily
gavage along with CCly for an additional 3 weeks

(n = 8 per group).

IN VITRO EXPERIMENTS

Activation Assay

Human primary HSCs (hHSCs; #5300; Scien-
Cell) were seeded on plastic six-well plates for 7 days
in complete medium with either dimethyl sulfoxide
0.1% or a compound (IVA337, 3 pM; rosiglitazone,
3 uM; fenofibrate, 30 uM; or GW501516, 3 uM).
hHSC activation was evaluated with western blot by
measuring the expression of a-smooth muscle actin

(«-SMA).

Proliferation Assay

hHSCs were seeded in 96-well plates for 24 hours,
then serum starved for 24 hours. They were challenged
with platelet-derived growth factor (PDGF; 10 ng/mL)
with or without a tested compound for 24 hours at vari-
ous concentrations (3nM to 30 pM, with a semi-log
scale) in triplicates. 5-Ethynyl-2’-deoxyuridine was incor-
porated for 17 hours, after which cells were fixed with
4% formaldehyde; immunocytochemistry staining for 5-
ethynyl-2'-deoxyuridine was then performed.

Statistical Analysis

Two groups were compared using a # test. Experi-
ments with more than two groups were analyzed using
one-way analysis of variance followed by Dunnett’s test.

Results

IVA337 ACTIVATES THE THREE
PPAR ISOFORMS WITH
MODERATE AND BALANCED
ACTIVITY IN THE
TRANSACTIVATION ASSAY

In the transactivation assay (see Supporting Informa-
tion), IVA337 acts as a pan-PPAR agonist with moder-
ate and balanced activity on the three PPAR isoforms.
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FIG. 1. IVA337 dose dependently decreases adiposity index and normalizes glucose and insulinemia in a diet-induced obesity model.
(A) The adipose index (total WAT/body weight) was calculated in mice under a chow diet (ND controls) and mice under an HE/HS
diet treated or not with IVA337 at 3, 10, and 30 mg/kg (n =10 per group). (B-E) Plasma analyses were performed at sacrifice for
nonfasting glucose, insulin, triglycerides, and adiponectin levels. (F) An OGTT was carried out at 5 weeks. Data represented as
mean * SEM. *P< 0.01, ®™P< 0.001 versus ND controls; *P< 0.05, *P< 0.01, **P< 0.001 versus HF/HS diet + vehicle.
Abbreviations: OGTT, oral glucose tolerance test; WAT, white adipose tissue.

IVA337 50% effective concentration (ECsy) levels
for the human PPARs (hPPARs) were 1.63E-06 M for
PPAR«, 8.49E-07 M for PPARY, and 2.28E-07 M for
PPARy. IVA337 ECsy levels for the rodent PPARs
were 3.78E-07 M for PPAR«, 1.55E-06 M for PPARGY,
and 2.23E-07M for PPARjy. The maximal effect
(Emax) reached 100% for both hPPARx and hPPARS
and 80% for hPPARy when compared to fenofibrate,
GW501516, and rosiglitazone, respectively.

IVA337 DECREASES BODY
WEIGHT GAIN AND INSULIN
RESISTANCE INDUCED BY AN
HF/HS DIET

The HF/HS model was used to evaluate the effect
of IVA337 on insulin resistance and other parameters
linked to metabolic syndrome. Compared to the ND,
mice fed for 12 weeks with the HF/HS diet had an
increased body weight (55%; P< 0.001) (Supporting
Fig. S1A), adiposity index (225%; P<0.001),

nonfasting glucose (24%; P< 0.01), and circulating
insulin levels (176%, P< 0.01) (Fig. 1A-C). IVA337
dose dependently reduced body weight gain (-37% at
30 mg/kg; P< 0.05) and adiposity index increase (-
60% at 30 mg/kg; P< 0.001) (Supporting Fig. S1A;
Fig. 1A). IVA337 also normalized insulinemia and
nonfasting glucose and reduced circulating leptin levels
(Fig. 1B,C; Supporting Fig. S1B). During an oral glu-
cose tolerance test, IVA337 dose dependently
improved glucose tolerance (Fig. 1D). IVA337
decreased circulating triglycerides, elevated serum
ketone bodies (Supporting Fig. S1C), and increased
circulating adiponectin, demonstrating PPARo and
PPARy target engagement (Fig. 1E,F).

IVA337 PREVENTS
STEATOHEPATITIS INDUCED BY
AN MCD DIET

We used the MCD diet model to evaluate the effect
of IVA337 on liver steatosis and inflammation.

IVA337 prevented steatosis (—98% at 30 mg/kg; P <
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FIG. 2. IVA337 improves steatosis, inflammation, fibrosis, and ALT in the MCD model. (A,B) Steatosis and (C,D) inflammation
were histologically measured at magnification X20 in mice under an MCD diet for 3 weeks receiving or not IVA337 at 10 and
30mg/kg (n=10 per group). (E) ALT level was measured in the blood, and (F) the expression of fibrotic genes was evaluated by
RT-qPCR in the liver. Data represented as mean = SEM. *P< 0.05, ®*P< 0.01, **P< 0.001 versus MCD diet + vehicle. Abbrevia-
tions: ALT, alanine aminotransferase; coll, collagen type I; RT-qPCR, real time polymerase chain reaction.

0.001) (Fig. 2A,B) and inflammation (=75% at 30 mg/
kg; P< 0.001) as measured histologically by lipid
droplet count or lobular inflammation foci count,
respectively (Fig. 2C,D). IVA337 also significantly
reduced plasma alanine aminotransferase levels (Fig.
2E). Consistent with the results obtained in the HF/
HS model, IVA337 decreased serum as well as liver
triglyceride levels (Supporting Fig. S2A,B). IVA337
also inhibited the induction of profibrotic and fibrotic
genes, such as transforming growth factor beta (TGF-
p1), «-SMA, tissue inhibitor of metalloproteinase 1
(TIMP1) and collagen 1 in MCD livers (Fig. 2F).

IVA337 REDUCES STEATOSIS,
INFLAMMATION, BALLOONING;,
AND FIBROTIC GENE EXPRESSION
IN THE foz/foz MODEL

The effect of IVA337 was investigated in the Alsm1
mutant foz/foz mice fed an HFD, a model closely repro-
ducing the natural history of NASH in humans. IVA337
was mixed into the HFD; a pharmacokinetic study indi-
cated that a concentration of IVA337 at 75 or 200 mg in
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1 kg of diet gave the same drug exposure as IVA337 at 10
and 30 mg/kg of body weight, respectively, given by daily
gavage (data not shown). After 6 weeks of the HFD, foz/
foz mice developed obesity and insulin resistance (Fig.
3A,B). Mice fed an HFD and treated with IVA337
quickly and fully normalized blood glucose levels in less
than a week (Fig. 3B) with food intake being similar
between the HFD groups with or without IVA337 (Sup-
porting Fig. S3A). IVA337 at 30 mg/kg completely
restored glucose tolerance to the level measured in chow-
fed mice (Supporting Fig. S3B,C). IVA337 also normal-
ized fasting glycemia, insulin, and the homeostasis model
assessment index after 6 weeks of treatment (Supporting
Fig. S3D-F). Similar to the other models, IVA337 treat-
ment significantly increased adiponectin levels (Fig. 3C).
Histologic examination of the liver indicated that IVA337
dose dependently reduced steatosis, ballooning, and
inflammatory foci induced by the HFD (Fig. 3D-F).
According to these three parameters, all mice in the HFD
control group presented with a nonalcoholic fatty liver dis-
ease activity score (NAS) superior to 5 (mean = 6.6),
which is considered to be definitive of NASH. IVA337
dose dependently and significantly decreased the number
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FIG. 3. IVA337 normalizes hyperglycemia and reduces steatosis, ballooning, and inflammation in the foz/foz model. During the 12-

week experiment, mice under ND (n=8), HFD (n=10), HFD

+ IVA337 at 10 mg/kg (n=10), or HFD + IVA337 at 30 mg/kg

(n=12) were followed for (A) body weight and (B) glycemia evaluation once a week. After sacrifice, (C) circulating adiponectin was
measured and (D-F) histologic analyses at magnification X20 of the liver were performed to quantify steatosis, ballooning, and inflam-
mation foci. Data represented as mean = SEM. *P < 0.05, **P < 0.01, **P < 0.001 versus HFD + vehicle.

of mice classified as definite NASH. At the highest dose,
only one mouse had an NAS equal to 5, while the other
10 had an NAS <5 (mean = 2.8; Supporting Fig. S4A,
B). Although no fibrosis was observed histologically,
IVA337 reduced the expression of fibrotic genes (-
SMA, collagen 3, TGF-f2, TGF-f3, TGF-f receptor
[TGF-SRI and RII], TIMP1, TIMP2, and matrix met-
alloproteinase 2 [MMP2]) induced by the HFD regimen
(Supporting Fig. S5A-C) and reduced macrophage
recruitment within the liver (Supporting Fig. S5D,E).
IVA337 had no effect on body weight, liver, white adipose
tissue, or heart weight (Supporting Fig. S6A-F).

IVA337 ACTS POSITIVELY ON THE
EXPRESSION OF GENES
CONTROLLING g-OXIDATION,
LIPOTOXICITY, INFLAMMASOME,
AND INFLAMMATION IN THE
MCD AND foz/foz MODELS

In both the MCD and foz/foz mice, which are two
mechanistically distinct animal models, IVA337

strongly and dose dependently induced stearoyl-
coenzyme A desaturase-1 (SCD1), a gene controlling
monounsaturation of free fatty acid and the activation
of which would decrease lipotoxicity. IVA337 induced
carnitine palmitoyltransferase (CPT)1b and CPT2,
genes controlling f-oxidation (Fig. 4B,E), and
decreased the expression of the inflammasome genes
NOD-like receptor family, pyrin domain containing 3
(NLRP3), apoptosis-associated speck-like protein con-
taining a CARD, caspasel, interleukin (IL)-1f, and
IL18 (Fig. 4A,D) as well as the inflammatory genes
C-C chemokine receptor type 2, chemokine (C-C
motif) ligand 5, and nuclear factor kappa B1 (NF-
xB1) (Fig. 4C)F).

IVA337 PREVENTS AND REVERSES
CCL-INDUCED LIVER FIBROSIS

In a preventive design, IVA337 at 30 mg/kg inhib-
ited CCly-induced collagen deposition (83% decrease
compared to the CCly vehicle; P< 0.01), reduced
plasma triglyceride, and increased plasma adiponectin
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FIG. 4. IVA337 inhibits Inflammasome-related genes and NF-xB expression and induces lipid metabolism-related gene expression
in the MCD and foz/foz models. Gene analyses were performed on the liver of mice from (A-C) the MCD model (n = 10 per group)
and (D-E) the foz/foz model (n=8-12 per group). (A,D) Liver inflammasome-related genes, (B,E) lipid metabolism genes, and
(GF) inflammatory genes. Data represented as mean = SEM. *P< 0.05, *P< 0.01, **P< 0.001 versus MCD + vehicle (A-C) or
HEFD + vehicle (D-F). Abbreviations: ASC, apoptosis-associated speck-like protein containing a CARD; CCL5, chemokine (C-C
motif) ligand 5; CCR2, C-C chemokine receptor type 2; mRNA, messenger RNA.

(Supporting Fig. S7A-C). IVA337 also inhibited the
expression of the key fibrotic genes TGF-f1, collagen
1, and fibronectin, whereas rosiglitazone (5 mg/kg)
had a limited efficacy on collagen deposition and
fibrotic gene expression (Supporting Figs. S7A and
S8A-E).

IVA337 was next investigated in a curative setting.
CCly treatment increased liver collagen deposition
(measured by hydroxyproline content) to 175% (P <
0.001) and 210% (P < 0.01) of control levels after 3
and 6 weeks, respectively. CCly also induced a thicken-
ing and increased number of fibrotic septa (Fig. 5A).
CCly-induced fibrosis was associated with inflamma-
tion demonstrated by the increased RNA expression of
F4/80, a marker of macrophages (Table 1). IVA337
treatment at 30 mg/kg after 3 weeks of CCly prevented
turther fibrosis progression (Fig. 5B,C) whether mea-
sured by hydoxyproline content or PicroSirius Red
morphometry. The histologic examination also dem-
onstrated a decrease in the number of collagen septa
(Fig. 5A). This effect on collagen deposition was
accompanied by a repression of fibrogenic genes, such
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as TGF-p1, TGF-p2, TGF-f3, fibronectin, collagen
I, MMP2, MMP9, and F4/80 at the doses of 10 and
30 mg/kg (Table 1).

REVERSION OF CCL-INDUCED
LIVER FIBROSIS BY IVA337:
COMPARISON WITH SINGLE

PPAR AGONISTS
The effect of IVA337 on liver fibrosis was compared
to three selective PPAR agonists, fenofibrate

(PPARa), GW501516 (PPARGJ), and rosiglitazone
(PPARy), administered for the last 3 weeks of a 6-
week CCly regimen. At the tested doses, the three
compounds are selective for their respective PPAR iso-
form. Fenofibrate and rosiglitazone but not
GW501516 produced histologic improvements with
smaller fibrotic septa and a significant reduction of
hydoxyproline content (Fig. 6A,B). Only IVA337 and
tenofibrate demonstrated antifibrotic efficacy by Sirius
Red morphometry (Fig. 6C). IVA337 and fenofibrate
decreased alanine aminotransferase and serum
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triglycerides, whereas expectedly, IVA337 and rosigli-
tazone increased adiponectin, demonstrating similar
PPAR target engagement between IVA337 and feno-

fibrate on one hand and IVA337 and rosiglitazone on
the other (Supporting Fig. S9A-C).

IVA337 INHIBITS PDGF-INDUCED
PROLIFERATION, STIFFNESS-
INDUCED ACTIVATION, AND
TGF-p1-INDUCED OVEREXPRES-
SION OF FIBROTIC GENES IN
hHSCs

We first investigated the effect of IVA337 and three
selective PPAR agonists, fenofibric acid, GW501516,

and rosiglitazone, on PDGF-induced proliferation of
hHSCs. PDGF increased basal proliferation by more

than 5-fold (Fig. 7A). IVA337 dose dependently and
completely inhibited PDGF-induced hHSC prolifera-
tion (Fig. 7A). In contrast, the selective PPAR ago-
nists demonstrated only partial effects up to the
highest concentrations (Fig. 7A). We then studied the
effects of the PPAR agonists on hHSC activation.
After 7 days in culture, 2-SMA expression was highly
increased, demonstrating activation (Fig. 7B, upper
western blot). Addition of 3 uM of IVA337 in the cul-
ture medium prevented an increase in a-SMA protein
at day 7 (Fig. 7B, upper western blot). Rosiglitazone
prevented overexpression of a-SMA to the same extent
as IVA337. GW501516, but not fenofibric acid, pre-
vented o-SMA overexpression with a lower potency
than IVA337 and rosiglitazone (Fig. 6F, lower western
blot). We finally tested the effects of the different
PPAR agonists on TGF-f1-induced hHSC activa-
tion. As expected, TGF-f1 significantly induced
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liver injury processes relevant to NASH pathophysiol-
ogy, we studied the effect of IVA337 on an HF/HS
model, an MCD model, the A/msi-deficient foz/foz
model, and the CCl; model. In addition, we looked at
PPAR-related gene expression and investigated the
effects of IVA337 and selective agonists of each iso-
form on activation and proliferation of hHSCs, key
drivers of liver fibrosis in NASH.

As shown in the transactivation assay, IVA337 is a
pan-PPAR agonist with balanced and moderate activ-
ity on the three PPAR isoforms. The efficacy of the
molecule reaches 100% for hPPARx and hPPARf/6
and 80% for hPPARy. The potency of IVA337 for
PPARo and PPARy is in the same range as that of
tenofibrate (ECsp, 2uM; PPAR«) and pioglitazone
(ECsp, 0.3 uM; PPARY), two clinically used and well-
tolerated PPAR agonists with a good efficacy/safety
ratio.*3 The balanced activity of IVA337 is further
supported by preclinical and clinical results that show
target engagement for the different PPARs, and phar-
macological active doses are all in a similar dose range.

In the 3 weeks with the MCD model, IVA337
completely prevented steatosis and to a large extent the
necroinflammatory changes. Similarly in the HFD foz/
toz model in which steatohepatitis occurs as a complica-
tion of severe obesity and insulin resistance, IVA337

also largely attenuated steatosis and ballooning and
reduced macrophage recruitment and fibrotic gene
expression. Although we did not provide the specific
mechanism of action that explains the positive effect of
IVA337 on NASH features, the gene analysis per-
formed on the MCD and foz/foz models provides an
indication of the implications of the different PPAR
isoforms. We highlight that IVA337 increased the
expression of CPT1b and CPT2 genes, which have
been widely documented to be direct target genes of
PPAR« and to participate in the transport to and oxida-
tion of fatty acids in the mitochondria, metabolizing fat
into energy.®**> Activation of this pathway would
reduce lipid accumulation and also counteract the de
nowvo lipogenesis contributing to inhibition of steatosis
in the hepatocytes. The expression of SCD1, which cat-
alyzes the desaturation of saturated free fatty acids, is
also enhanced with IVA337 treatment. Using pioglita-
zone, Borengasser et al.®® demonstrated that this gene
is a downstream gene of PPARy. The increase in
SCD1 expression should lead to an increase in mono-
unsaturated fatty acids (MUFAs) that are less toxic than
saturated fatty acids. Interestingl , MUFA feeding pre-
vents MCD-induced injury.®”” SCD1 inhibitors are
currently tested in NASH because inhibition of SCD1
leads to a decrease in steatosis. SCD1™" mice under an
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activator inhibitor 1.

MCD have decreased steatosis but have a marked
increase in hepatocellular apoptosis, liver injury, and
fibrosis compared with SCD1*/" mice. Finally, we
demonstrated that IVA337 decreased the expression of
the inflammasome components and downstream cyto-
kine targets. This effect of IVA337 might be due to
PPARGS because it was previously shown that PPARS
activation decreases the expression of inflammasome
components (NLRP3, caspasel, and IL-1) when stimu-
lated with palmitate (a saturated fatty acid) and lipopo-
lysaccharides in hepatocytes.*? This effect could also be
due to the PPARy effect on SCD1 because saturated
fatty acids activate the inflammasome whereas MUFAs
inhibit the inflammasome components.(26’38) Overall,
these results indicate that activation of PPARGg,
PPARJ, and PPARy in the hepatocytes would contrib-
ute to the antisteatotic and anti-inflammatory effect of
IVA337 in the MCD and foz/foz models.

In addition to its effect on steatosis and necroin-
flammation, we also demonstrated that IVA337 has a
potent antifibrotic effect. The fibrotic pathology was
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activated in the MCD as well as in the foz/foz model,
although the 3-week (MCD) or 12-week (foz/foz) reg-
imen applied was too short to observe fibrosis histolog-
ically. Treatment with IVA337 significantly decreased
the expression of the key profibrotic genes, such as
TGF-f1 and «-SMA. IVA337 prevented and inter-
rupted progression of liver fibrosis in the CCly model.
In order to understand the relative contribution of the
PPAR isoforms, we compared the effect of IVA337 to
that of each of the three selective PPAR agonists,
fenofibrate (PPARx), GW501516 (PPARJ), and
rosiglitazone (PPARy). In the CCly therapeutic
model, the rank order of antifibrotic efficacy was
IVA337 > fenofibrate > rosiglitazone > GW501516,
with PPARy and PPARJ agonists having a partial
effect on fibrosis. Our results are consistent with pub-
lished studies on the effect of selective PPAR agonists
on liver fibrosis.**?"3?  However, results with
GW501516 in our study and in the literature differ
from those obtained with KID3010, another PPARO
agonist that was shown to be very active on liver fibrosis
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induced by CCly or bile duct ligation.(39) This indicates
that PPARJ-mediated inhibition of fibrosis is likely to
be ligand dependent owing to different pharmacokinetic
properties or recruitment of different coregulators.®”*?
In vitro studies support that IVA337 dose dependently
and completely inhibits PDGF-induced HSC prolifera-
tion, while the single agonists only have a partial effect.
Both IVA337 and rosiglitazone prevented myofibroblas-
tic transformation of HSC on stiff support, while
GW501516 had a partial effect, and fenofibrate was
inactive. Surprisingly, none of the single agonists inhib-
ited TGF-f1-induced fibrotic gene expression, yet it
was completely blocked by IVA337. Our previous work
supports that inhibition of TGF-f1-induced myofibro-
blast transdifferentiation by IVA337 is mediated
through inhibition of phospho-SMAD?2/3 expres-
sion.*? Thus, IVA337 with pan-PPAR ligand-binding
potency consistently inhibits hHSC proliferation,
culture-mediated activation, and TGF-f1-driven profi-
brotic activation and prevents fibrosis and fibrosis pro-
gression in vivo. As none of the single agonists achieved
such a level of control on the fibrotic process, the effect
of IVA337 is likely to be explained by a cumulative effect
of multiple PPAR targeting. This further strengthens
the potential of IVA337 as an antifibrotic agent in
patients with NASH.

IVA337, in addition to improving the main NASH
parameters, also improved metabolic features relevant
to NASH. Indeed, dysregulation of metabolism, such
as insulin resistance and type 2 diabetes, is closely
linked to the development of NASH. In the HF/HS
model, fenofibrate (PPAR«) is reported to prevent
body and fat mass increase and fasting insulin increase
but does not improve fasting glucose or glucose toler-
ance, while rosiglitazone (PPARy) further increases
body and fat mass versus diet-control animals and in
contrast to fenofibrate restores glucose tolerance and
decreases fasting glucose and insulin levels.*? TVA337
almost normalized all these parameters; it also
decreased plasma triglycerides and increased f§ oxida-
tion. IVA337 also quickly normalized fasting glucose
and insulin levels and fully restored glucose tolerance
in obese and insulin-resistant HFD-fed foz/foz mice.
This profile may reflect the complementary (lipid and
glucose metabolism) as well as the opposing effects (on
fat mass) of PPAR«/6 and PPARy activation. Besides
PPARoa, PPARS activity likely contributes to the
observed effect because PPARO agonists reduce body
weight gain and glucose and lipid abnormalities and
increase liver fatty acid f# oxidation.**** Of note in

this context, the PPARJ agonist GWO0742 also
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corrected hypertension, vascular inflammatory and oxi-
dative status, and endothelial dysfunction.*> On the
other hand, IVA337 increased circulating adiponectin,
a canonical PPARYy target that contributes to decreas-
ing inflammation and improving insulin resistance in
the liver; the adverse effect of PPARy activation in the
adipose tissue is adipogenesis and fat mass gain. In
patients, adiponectin inversely correlates with steatosis
and steatohepatitis.*> Together, this supports the
conclusion that the effects of IVA337 on insulin sensi-
tivity, body weight gain, and other metabolic disorders
induced by the HEF/HS diet or HF diet in foz/foz mice
result from the concomitant activation of the three
PPAR isoforms and that a pan-PPAR activation could
potentially deliver a superior improvement of NASH-
associated metabolic disorders compared to individual
PPAR agonists.

In humans, PPAR targeting is beneficial for meta-
bolic steatohepatitis. It has been shown that the PPAR«
expression level in the liver negatively correlates with the
severity of NASH.“® During a 48-week clinical trial in
patients with biopsy-proven NASH, fenofibrate signifi-
cantly decreased ballooning and improved metabolic
parameters but not inflammation or steatosis.'® Selec-
tive PPAROJ agonists have not been investigated in
patients with NASH, but in overweight subjects
GW501516 and MBX-8025 improved metabolic
parameters during a 2-week and 8-week duration trial,
respectively."*® More recently, the dual PPAR«/S
agonist elafibranor (GFT505) achieved improvement in
steatohepatitis without fibrosis worsening in patients
with a NAS score >4 and decreased fibrosis in the sub-
group of patients with NASH who responded to
GFT505.%” PPARy activation by pioglitazone signifi-
cantly improves steatosis, ballooning, and inflammation
as well as metabolic markers in patients with NASH
after 6 or 12 months of treatment.*® A recent 18-
month study in prediabetic and diabetic patients with
biopsy-proven NASH demonstrated that pioglitazone
was well tolerated without adverse effect and was associ-
ated with long-term metabolic and histologic improve-
ment.®? As selective targeting of each PPAR isoform
confers some therapeutic benefit for patients with
NASH, it is therefore expected that combined activa-
tion of the three PPAR isoforms might bring substan-
tial advantage over specific and dual agents by
interacting on different pathways in the NASH to fibro-
sis sequence.

In conclusion, this study demonstrates that
IVA337, a safe, well-tolerated, moderate, and well-
balanced pan-PPAR agonist, rapidly and powerfully
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improves metabolic parameters and NASH histopath-
ologic features, such as steatosis, ballooning, inflamma-

tion,

and fibrosis, in animal models. As IVA337

concomitantly activates the three PPAR isoforms, it
modulates various metabolic and pathologic pathways,
culminating or adding up to control metabolic features
and NASH pathology. According to these preclinical
data and the clinical results reported with several single
or dual PPAR agonists and IVA337’s good safety pro-
file (manuscript under preparation), IVA337 is consid-
ered to be a promising candidate for NASH treatment.
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