WEBCAST – iMProveS Head Line Results
19 December 2019
This document has been prepared by Inventiva (the “Company”) solely for the purpose of this presentation. This presentation includes only summary information and does not purport to be comprehensive. Any information in this presentation, whether from internal or from external sources, is purely indicative and has no contractual value. The information contained in this presentation are provided as at the date of this presentation. Certain information included in this presentation and other statements or materials published or to be published by the Company are not historical facts but are forward-looking statements. The forward-looking statements are based on current beliefs, expectations and assumptions, including, without limitation, assumptions regarding present and future business strategies and market in which the Company operates, and involve known and unknown risk, uncertainties and other factors, which may cause actual results, performance or achievements, or industry results or other events, to be materially different from those expressed or implied by these forward-looking statements. These risks and uncertainties include those discussed or identified under Chapter “Risk factors” in the Company’s registration document (document de référence) filed with the French Financial markets authority (AMF – Autorité des marchés financiers), available on the Company’s website (www.inventivapharma.com) and on the website of the AMF. The Company may not actually achieve the plans, intents or expectations disclosed in its forward-looking statements and you should not place undue reliance on the forward-looking statements contained herein. There can be no assurance that the actual results of the Company’s development activities and results of operations will not differ materially from the Company’s expectations. Factors that could cause actual results to differ from expectations include, among others, the Company’s ability to develop safe and effective products, to achieve positive results in clinical trials, to obtain marketing approval and market acceptance for its products, and to enter into and maintain collaborations; as well as the impact of competition and technological change; existing and future regulations affecting the Company’s business; and the future scope of the Company’s patent coverage or that of third parties.

The information contained in this presentation has not been subject to independent verification. No representation or warranty, express or implied, is made by the Company or any of its affiliates, advisors, representatives, agents or employees as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information, or opinions contained herein. Neither the Company, nor any of its respective affiliates, advisors, representatives, agents or employees, shall bear any responsibility or liability whatsoever (for negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with this presentation. Such information is subject to modification at any time, including without limitation as a result of regulatory changes or changes with respect to market conditions, and neither the Company, nor any of its affiliates, advisors, representatives, agents or employees, shall, nor has any duty to, update you.
Today’s speakers

Frédéric Cren, MA/MBA, Chairman, CEO and Co-Founder

Pierre Broqua, Ph.D., CSO and Co-Founder

Marie-Paule Richard, MD, CMO

Chris Hendriksz, member of the iMProveS clinical study steering committee and extraordinary professor of Paediatrics and Child Health, University of Pretoria, South Africa
Agenda

- Introduction
- Mucopolysaccharidoses (MPS) diseases
- Odiparcil mechanism of action
- iMProveS trial
 - Study design and objectives
 - Patients disposition
 - Baseline characteristics and MPS history
 - Odiparcil pharmacokinetic profile
 - Odiparcil pharmacodynamics: urinary GAGs
 - Safety
 - Efficacy
- Conclusions
Mucopolysaccharidoses (MPS) diseases
Mucopolysaccharidoses (MPS): rare genetic disorders caused by the absence or malfunctioning of lysosomal enzymes

Pathology

- Lysosomes function as the primary digestive units within cells: enzymes within lysosomes break down or digest particular nutrients, such as certain carbohydrates and fats.
- The absence or malfunctioning of lysosomal enzymes are responsible of metabolic disorders caused the abnormal degradation of glycosaminoglycans (GAGs) or mucopolysaccharides.
- The progressive accumulation of GAGs in the lysosomes causes progressive damage throughout the body, including the heart, eyes, bones, joints, respiratory system and central nervous system.
- MPS symptoms are first shown during early childhood and patient’s life expectancy depends on the severity of symptoms: without treatment, severely affected individuals may survive only a few years, those with milder forms of the disorder usually live into adulthood, although their life expectancy may be reduced.

Clinical signs

Epidemiology

- MPSs are autosomal recessive except X linked MPS II.
- The prevalence of all forms of MPs combined is estimated to be 1 / 25 000 births.
- However, because MPS, especially the milder forms of the diseases, often go unrecognized, these disorders are under-diagnosed or misdiagnosed, making it difficult to determine their true frequency in the general population.

Diagnosis based upon

- The clinical identification of characteristic findings (e.g., coarse facial features, skeletal malformations, hepatosplenomegaly).
- A variety of specialized tests including urine analysis to detect increased levels of GAGs.
- Enzyme assays may be also performed to detect deficient levels of lysosomal.
- Genotyping may be also performed to identify mutations.

Patient associations to help families with MPS can be found in almost all countries
Odiparcil mechanism of action
Odiparcil: a GAG clearance therapy in MPS in which dermatan and chondroitin sulfates (DS, CS) accumulate

Odiparcil original mechanism of action could provide additive benefit to enzyme replacement therapies (ERT) in MPS I, II, IVA, VI and VII patients

Odiparcil diverts endogenous protein-bound GAG to **soluble odiparcil-bound CS and DS synthesis**

Protein-bound GAG (HS, CS, DS, KS) → GTI → ODI → Odiparcil-bound GAGs (DS and CS)

Healthy
- GAG pool to be degraded
- GAG degradation

MPS
- GAG degradation is defective

GAG clearance therapy
- Lower the GAG pool levels
- Clear intracellular GAG
Odiparcil GAG clearance mechanism of action observed in MPS VI mice

Odiparcil decreases GAG accumulation in tissues

- Wild-type and MPS VI mice
- Odiparcil decreases GAG accumulation in tissues

Odiparcil restores mobility

- Sulfated GAG produced from Odiparcil are excreted in urine

Source: Company data
Odiparcil penetrates tissues that ERT cannot reach

Odiparcil is well distributed in tissues and organs poorly penetrated by recombinant enzymes

<table>
<thead>
<tr>
<th></th>
<th>Heart</th>
<th>Bone</th>
<th>Cornea</th>
<th>Cartilage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odiparcil<sup>(1)</sup></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>rhASB<sup>(2)</sup></td>
<td>✔</td>
<td>Not tested</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Meaningful concentrations of odiparcil observed also in tissues that are poorly vascularized or protected by a barrier: bone, corneal tissue and cartilage
Odiparcil reverses corneal impairment in MPS VI mice

Odiparcil restores an healthy corneal structure and decreases corneal GAG storage

Source: Company data

Odiparcil restores corneal epithelium thickness

Odiparcil restores corneal epithelium cell layers

Odiparcil decreases GAG storage in corneal stroma

Blinded corneal stroma vacuolation scoring

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>MPS VI</th>
<th>MPS VI + Odi</th>
</tr>
</thead>
<tbody>
<tr>
<td>thickness (µm)</td>
<td>0.0</td>
<td>2.9</td>
<td>0.5</td>
</tr>
<tr>
<td>number of cell layers</td>
<td>p<0.001</td>
<td>p<0.001</td>
<td>p<0.001</td>
</tr>
</tbody>
</table>

scale (0-3)
0. no detectable vacuolation, no GAG accumulation
1. some large vacuolation with some distended cells
2. extensive area of large vacuolation with GAG accumulation
3. extensive area of large vacuolation with GAG accumulation and separate collagen fibers

N=10 for all groups
iMProveS trial

- Study design and objectives
- Patients disposition
- Baseline characteristics and MPS history
- Odiparcil pharmacokinetic profile
- Odiparcil pharmacodynamics: urinary GAGs
- Safety
- Efficacy
Study design and objectives of iMProveS Phase IIa trial of odiparcil in MPS VI

Phase IIa
- Phase III enabling study with evidence for dose selection and PK / PD response characterization
- Clinicaltrials.gov identifier: NCT03370653

Population
- ≥ 16yo

Objectives

Safety
- Clinical and biological assessments (standard tests)

Pharmacokinetics
- Odiparcil plasma levels

Efficacy
- Leukocyte, skin and urinary GAG content
- Activity and mobility tests (6 minute walk test, upper limb function, shoulder mobility range)
- Cardiac, vascular and respiratory functions
- Eye impairment, hearing capacity, pain assessment, quality of life questionnaires

Study design and pharmacology
- **Six-weeks**
 - Screening (4w) and preliminary safety assessment (2w)
 - Screening, baseline and randomization

- **Four-weeks**
 - Placebo + ERT
 - Odiparcil, 250 mg bid + ERT
 - Odiparcil, 500 mg bid + ERT
 - Odiparcil, 500 mg bid and no ERT

- **26-week treatment**
 - 15 patients double blind + 5 patients open label

- **Four-weeks**
 - Follow up

- **End of treatment**
 - 4 weeks
Patients disposition

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Odiparcil 250mg bid</th>
<th>Odiparcil 500mg bid</th>
<th>Odiparcil 500mg bid</th>
<th>Non-ERT open-label cohort</th>
<th>Total N = 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERT blinded cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Included patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screened patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Included patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>FAS population [a]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Safety population [b]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>End of treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Treatment period completed</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>• Treatment premature discontinuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Event</td>
<td>1*</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Patient’s decision</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

[a] FAS: Randomised patients in double-blind cohort or included in open-label cohort receiving at least one dose of study treatment

[b] Safety: Patients who received at least one dose of study treatment

* Death due to bronchopneumopathy
Baseline characteristics and MPS history – FAS population

<table>
<thead>
<tr>
<th></th>
<th>Placebo N = 5</th>
<th>Odiparcil 250mg bid N = 5</th>
<th>Odiparcil 500mg bid N = 5</th>
<th>Odiparcil 500mg bid N = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Male</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>18.0</td>
<td>24.0</td>
<td>25.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Min ; Max</td>
<td>16.0 ; 31.0</td>
<td>18.0 ; 64.0</td>
<td>17.0 ; 33.0</td>
<td>20.0 ; 39.0</td>
</tr>
<tr>
<td>Height at baseline (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>130.0</td>
<td>147.0</td>
<td>122.0</td>
<td>140.0</td>
</tr>
<tr>
<td>Min ; Max</td>
<td>111.0 ; 155.0</td>
<td>132.0 ; 150.0</td>
<td>108.0 ; 148.0</td>
<td>111.0 ; 165.0</td>
</tr>
<tr>
<td>Age at diagnosis (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.24</td>
<td>7.30</td>
<td>1.05</td>
<td>17.10</td>
</tr>
<tr>
<td>Min ; Max</td>
<td>1.3 ; 6.5</td>
<td>4.4 ; 59.0</td>
<td>0.3 ; 6.9</td>
<td>5.3 ; 34.3</td>
</tr>
<tr>
<td>Time elapsed of MPS diagnosis (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>15.7</td>
<td>10.7</td>
<td>19.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Min ; Max</td>
<td>11.5 ; 27.8</td>
<td>5.0 ; 20.6</td>
<td>16.4 ; 28.5</td>
<td>2.0 ; 31.7</td>
</tr>
<tr>
<td>Duration of ERT treatment (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>13.42</td>
<td>12.07</td>
<td>13.87</td>
<td></td>
</tr>
<tr>
<td>Min ; Max</td>
<td>11.2 ; 16.8</td>
<td>4.4 ; 15.1</td>
<td>12.4 ; 17.0</td>
<td></td>
</tr>
</tbody>
</table>
Odiparcil pharmacodynamics: urinary GAGs
Total GAG levels in urine and PK/PD correlation

- uGAG (total) is increased after 4 week of Odiparcil
- uGAG increase reaches a steady state after 4 weeks of treatment
- At 1000 mg/day increased is comparable in ERT and non-ERT cohorts

Consistent with odiparcil’s mechanism of action, a dose-dependent urinary GAGs clearance, used as an activity biomarker, was clearly demonstrated in the entire patient population treated with odiparcil
LeukoGAGs evaluation

CS levels in leukocytes

- CS levels in leukocytes are variable in all groups
- Effect of treatment can not be assessed

PK/PD correlation at V2

No correlation between CS levels in leukocytes and odiparcil exposure in plasma

- Placebo
- odiparcil 500mg
- odiparcil 1000mg
- Non-ERT, odiparcil 1000mg

In this study and similarly to ERT, leukoGAGs not confirmed as biomarkers for decrease of GAG accumulation
Safety

The clinical study met its safety primary objective further supporting the good overall safety profile of odiparcil already observed in previous Phase I and Phase II clinical studies.

All 4 European investigators of the iMProveS study reported positive experience with odiparcil in terms of safety.

The majority of adverse events were mild or moderate.

One death occurred in the placebo group.

Three serious adverse events (SAEs) were assessed as treatment-related in patients in the odiparcil groups.

- Two SAEs were biological findings qualified as laboratory false-positive.
- One SAE was a skin reaction, which is frequently observed in MPS patients.

Compared to previous Phase I and II clinical studies conducted with odiparcil for the prevention of thrombosis, no new safety findings were observed.
Number of patients with at least one treatment-related Adverse Event (AE)

<table>
<thead>
<tr>
<th></th>
<th>Double blind (ERT)</th>
<th>Open label (non-ERT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo N = 5</td>
<td>Odiparcil 250mg bid N = 5</td>
</tr>
<tr>
<td>AE</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Serious AE</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Severe AE</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Moderate AE</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Mild AE</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

AEs: occurred from first to last dose of the study treatment in the core study
Serious stands for hospitalisation or considered Important medical event by the investigator
Number of serious AEs

<table>
<thead>
<tr>
<th></th>
<th>Placebo N = 5</th>
<th>Odiparcil 250mg Bid N = 5</th>
<th>Odiparcil 500mg Bid N = 5</th>
<th>Odiparcil 500mg Bid N = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchopneumopathy</td>
<td>1, severe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteinuria*</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash*</td>
<td>1, severe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Respiratory Failure</td>
<td></td>
<td></td>
<td></td>
<td>1, severe</td>
</tr>
<tr>
<td>Calculus Bladder</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Device Breakage**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous Occlusion**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAEs: occurred from first to last dose of the study treatment; Serious stands for hospitalisation or considered Important medical event by the investigator.

* Assessed treatment-related by the investigators; ** Same patient

9 SAEs in 8 patients
- 2 patients in the placebo group including 1 death due to bronchopneumopathy
- 6 patients in the odiparcil groups including 3 treatment-related SAEs
 - *Proteinuria* further qualified as Laboratory false positive
 - *Rash* (skin exanthema) that recovered
Efficacy

- Number of evaluable patients at Visit 7 (26 weeks): N=13

- Main efficacy parameters at baseline and end-of-treatment (EOT):
 - Mobility: 6MWT, 9Hole Peg Test, Shoulder ROM,
 - Respiratory function: FEV1, FVC
 - Brief Pain Inventory (BPI): dimensions pain and interference,
 - Ophthalmological parameters: visual acuity, slit lamp examination, intra-optic pressure, corneal opacification measurement (COM), central cornea thickness
 - Cardiovascular parameters: Cardiac (ECG, echocardiogram), and Carotid Intima Media Thickness (CIMT)
A steering committee and Experts in Audiology, Cardiology and Ophthalmology reviewed blindly all body systems measurements and evaluations with their overall medical history and profile, and therefore assessed efficacy of each of them in a 5-point scale by body system:

- Improved
- Slightly improved
- Stable
- Slightly worsened
- Worsened

Body systems analyzed were Locomotor, Respiratory, Ophthalmologic, Cardiac, and Audiologic.

Body systems analyses included the usual descriptive statistical parameters, and both:
- the relative change from the reference value to the end of treatment (EOT)/V7 visit value
- the absolute change from the reference value to the V7 value
Improvements in ERT Cohort (N=10) (1/2)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Respiratory (FVC)</th>
<th>Ophthalmology (COM)</th>
<th>Cardiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERT Placebo (N=4)</td>
<td>0</td>
<td>1</td>
<td>1 (slightly improved)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#Patient D: +12%, +24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#Patient F: ↓ 30% LVMI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(slightly improved)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(improved)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(3 slightly improved + 1 improved)</td>
</tr>
<tr>
<td>ERT ODI (N=6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250mg bid</td>
<td>250mg bid</td>
<td>250mg bid</td>
</tr>
<tr>
<td></td>
<td>#Patient A: + 5%</td>
<td>#Patient E: +19%, +23%</td>
<td>#Patient E: no longer mitral regurgitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#Patient B: + 4%</td>
<td>#Patient A: ↓ 17% LVMI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#Patient C: +9%</td>
<td>#Patient C: ↓ severity mitral regurgitation</td>
</tr>
<tr>
<td></td>
<td>500mg bid</td>
<td>500mg bid</td>
<td>500mg bid</td>
</tr>
<tr>
<td></td>
<td>#Patient C: +42%(a)</td>
<td></td>
<td>#Patient C: ↓ severity aortic regurgitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#Patient G: ↓ 14.5% LVMI, ↓ severity aortic regurgitation, ↓ CIMT both carotids</td>
</tr>
</tbody>
</table>

- Regarding locomotor function, no clear difference was observed among the different patient subgroups

(a) Corneal transplant of the other eye
LVMI: left ventricular mass index (echocardiogram)
CIMT: carotida intima media thickness
Considering the short study duration, patients under long ERT duration, and the advanced status of the disease in adult patients included in the study, the iMProveS study showed positive results regarding the efficacy of odiparcil.

• Improvements were observed in patients treated with odiparcil, in addition to ERT, with regards to corneal clouding as well as cardiac and respiratory functions.
Some initial signals of efficacy were also detected in the 3 non-ERT treated patients

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Respiratory (FVC)</th>
<th>Ophthalmology</th>
<th>Cardiology</th>
<th>Range of Motion</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient # 1</td>
<td>Improved FVC by +18%</td>
<td>NA</td>
<td>Stable</td>
<td>Improved range of motion on both shoulders (+17,8%/+21,0%)</td>
<td>Pain improved</td>
</tr>
<tr>
<td>Patient # 2</td>
<td>Stable</td>
<td>Stable</td>
<td>Slightly Worsened</td>
<td>Improved range of motion on both shoulders (+8,1%/+8,5%)</td>
<td>Pain improved</td>
</tr>
<tr>
<td>Patient # 3</td>
<td></td>
<td>NA</td>
<td>Stable</td>
<td>Worsening</td>
<td>Worsening</td>
</tr>
<tr>
<td></td>
<td>• Severe patient hospitalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Poor compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions
Conclusions (1/2)

- Safety primary objective further supports the good overall safety profile of odiparcil already observed in previous Phase I and Phase II clinical studies
 - No new safety findings were observed

- Positive results regarding the efficacy after 6 months of odiparcil in advanced stages of MPS VI disease

- Improvements in patients treated with odiparcil, in addition to ERT, with regards to corneal clouding as well as cardiac and respiratory functions
 - Regarding locomotor function, no clear difference among the different patient subgroups.

- Consistent with odiparcil’s mechanism of action, a dose-dependent urinary clearance of glycosaminoglycans (GAGs), used as an activity biomarker, was clearly demonstrated in the entire patient population treated with odiparcil.

- Similarly to ERT, odiparcil did not induce a reduction of leukocyte GAGs, which is not confirmed as a biomarker for the decrease of GAG accumulation in this study.
Conclusions (2/2)

- The PK profile obtained in MPS VI patients treated with odiparcil is not impacted by ERT and is consistent with profiles previously observed in other Phase I and Phase II studies in prevention of thrombosis.

- Inventiva will **continue the clinical development of odiparcil** for the treatment of MPS VI.

 Launch, as planned, a clinical study evaluating odiparcil in MPS VI children, the target population for this disease.
Q&A