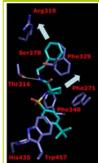


Discovery and optimization of indoline derivatives as new LXR agonists

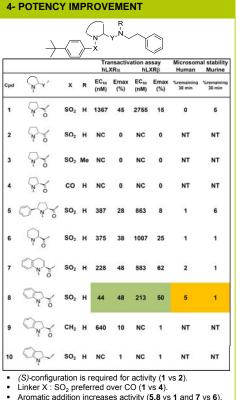
Dominique Potin¹, Jérôme Amaudrut¹, Michel Bondoux², Maryline Chatar¹, Vincent Derain¹, Christine Dumas², Anthony Dunand², Arnaud Sinan Karaboga², Luc Lebreton², Christine Massardier¹, Anne Perreau², Olivier Riguet², Céline Rivaux², Michel Souchet², Dominique Viard² (1) Department of Medicinal Chemistry, Inventiva, DAIX, France (2) Department of Medicinal Chemistry, Laboratoires Fournier, DAIX, France

1-INTRODUCTION

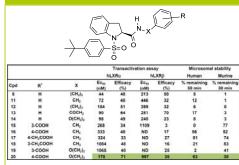

- Liver X receptors are members of the nuclear receptor superfamily of ligand activated transcription factors.
- They act by forming heterodimers with retinoid X receptor (RXR).
- Agonism of LXRs upregulates several genes involved in lipid metabolism :
 - Cholesterol transport genes that modulate Reverse Cholesterol Transport (RCT)
 - ABCA1, ABCG1, ABCG5, ABCG8 –desired effects
 - Important function of both LXRα and LXRβ (macrophage, intestine)
 - Triglyceride synthesis genes
 - SREBP1c and FAS –undesired effects
- LXRα is the predominant isoform in the liver
 Oxysterols (e.g. 24,25-epoxycholesterol) are LXR endogenous ligands.
- <u>Objective of the program</u>: Identification of orally active partial LXRs agonists (devoid of side effects) and subtype selective ligands (β-selective preferred) to elucidate the functional roles of LXRs.

2- HTS

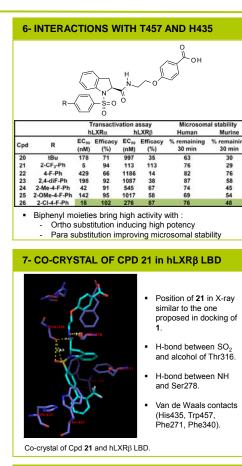
- Compounds were assayed for agonist activity on LXR-GAL4 chimeric receptors in transfected Cos-7 cells. Results are expressed as the induction rate normalized to the activity of the reference T0901317.
- Proline derivative hit 1 was identified through a transactivation cell based HTS assay. the objective was to improve potency and Emax using a structure-based design strateqy.


 $\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ &$

3- DOCKING OF COMPOUND 1

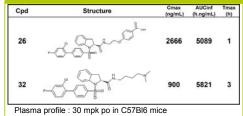

Docking in hLXRβ (PDB : 1P8D). Only key residues of the binding pocket displayed in blue. Docking solution for 1 depicted in cvan.

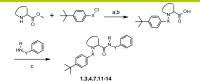
- Compound 1 was docked into the pocked of human LXR β (PDB ID : 1P8D). Ligand was submitted to the *Ligprep* module of *Maestro* and docked using *Glide*.
- Compound **1** is nicely positioned to create an H-bond between amide NH and Thr316.
- Improvement in binding could be achieved through :
- Additional Van der Waals interactions with aromatic residues of the pocket (Phe271, Phe329). Introduction of polar residues
- to get an H-bond with Arg319. (Depicted as light blue arrows in the figure)



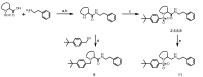
- Aromatic addition increases activity (5,8 vs 1 and 7 vs 6).
 Amide : C=O (10 vs 8) and NH (3 vs 1) mandatory for activity.
- Microsomal stability needs to be improved.

5- MICROSOMAL STABILITY IMPROVEMENT


- Change in the X-linker length has little effect on the activity (Cpds 8-14).
- Microsomal stability is increased with the addition of a carboxylic acid in para position of the phenyl ring.


8- MODULATION OF α/β SELECTIVITY

$ \begin{array}{c} & \overset{H}{\underset{N_{-}}{N_{-}}{\underset{N_{-}}{N_{-}}{\underset{N_{-}}{N_{-}}{\underset{N_{-}}$									
1			Transactivation assa hLXRg hLXR						
Cpd	R1	R2	EC ₅₀ (nM)	Efficacy (%)	EC ₅₀ (nM)	Efficacy (%)	% remaining 30 min	% remaining 30 min	
27	2-CF ₃ Ph	∽O−С°н	62	82	409	77	93	52	
28	2-CF ₃ Ph	$\neg \bigcirc$	23	88	90	105	5	7	
29	2-CF ₃ Ph	5	38	58	70	95	47	24	
30	2-CF ₃ Ph	~D	134	65	133	75	58	30	
31	2-CF ₃ Ph	~~~	101	80	41	93	55	42	
32	2-CF ₃ Ph	~h	143	94	153	93	74	79	
33	2-CI-4-F-Ph	~~N	269	68	228	92	92	79	


9- PHARMACOKINETIC PROFILE

10- SYNTHESIS

(a) (i) NEt₂, THF, rt ; or (ii) NEt₃, CH₂CH, rt ro NMM, CH₃CN, reflux ; (b) (i) NaOH, Dioxane, H₂O, rt ; or (ii) LiOH, THF, H₂O, rt or LiOH, Dioxane, H₂O, rt; (c) (i) resin PS-carbodiimide, HOAt, CH₂CI₂, rt ; or (ii) EDCI, DIPEA, CH₂CI₂, rt ; or (iii) EDCI, DIPEA, CH₂CI₂, rt

(a) resin PS-carbodiimide, HOAt, CH₂Cl₂, rt; (b) TFA, CH₂Cl₂, rt; (c) (i) IRA400, CH₂Cl₂, rt (ii) sulfonyl chloride, PS-DIEA, CH₂Cl₂, rt; (d) Na₂CO₃, acetonitrile, rt (e) BH₂SMe₂, THF, reflux

If R=Me, (a) (i) NEt₃, THF, rt; or (ii) NMM, CH₃CN, rt; (b) (i) NaOH, Dioxane, H₂O rt; or (ii) LiOH, THF, H₂O, rt ;

If R=H, (a) LiOH, CH₃CN, H₂O, rt

 $\label{eq:method A: (c) (i) oxalyl chloride, toluene, DMF, rt (ii) Et_3N, CH_2Cl_3, rt or (i) EDCl, HOAT, CH_2Cl_3, rt (c) (ii) HCl dioxane (AN), ACOEt Method B: (c) (i) EDCl, HOAT, CH_2Cl_3, rt (c) (ii) HCl dioxane (AN), ACOEt Method B: (c) (i) EDCl, HOAT, CH_2Cl_3, rt (c) (ii) ARB(OH)_3, PdCl_2dppf (cat), DME/H2O, Na_2CO_3; (e) (i) HCl dioxane (AN), ACOEt \\$

Method C : with R1=I (c) ArB(OH)₂, PdCl₂dppf (cat), DME/H₂O, Na₂CO₃; (d) (i) EDCI, HOAT, CH₂Cl₂, rt; or (ii) oxalyl chloride, toluene, DMF, rt; (iii) Et₃N, CH₂Cl₂, rt

11-SUMMARY

The discovery and structure activity optimization of new indoline agonists of LXR has been developed. Compounds with different LXRa/ β profiles and good PK parameters have been identified. Derivatives bearing acidic moieties are more LXRa selective. LXR β activity was restored by switching to a tertiary amino group leading to dual LXRa/ β agonists (e.g. 31).

This series has been further developed delivering two clinical candidates.

dominique.potin@inventivapharma.com