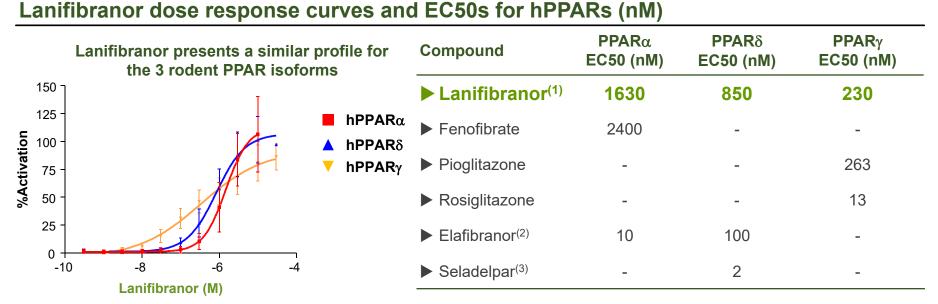




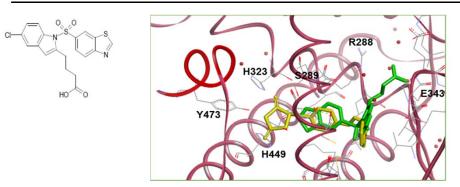
### Lanifibranor KOL Breakfast

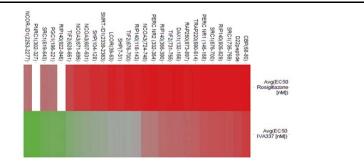
Boston November 2019






# Lanifibranor: a pan-PPAR Agonist with Therapeutic Potential in NASH and NASH Cirrhosis


November 9, 2019




# Lanifibranor is a next generation panPPAR with moderate and well balanced activity on PPAR $\alpha$ , $\delta$ and $\gamma$

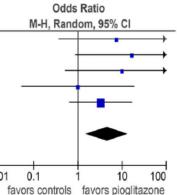


Lanifibranor binds differently than rosiglitazone to PPAR<sub>γ</sub> inducing a different coactivator recruitment<sup>(4)</sup>





Potency scale: red 10 nM; grey: 500 nM; green 5 000 nM

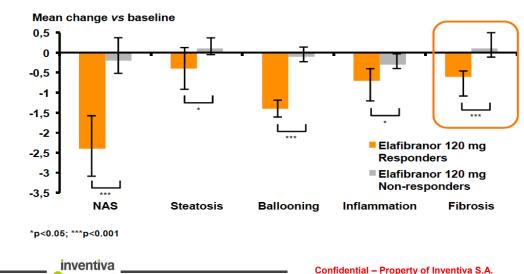

Source: (1) Company data (2) Hanf R et al, Diabetes & Vascular Dis Res 2014 (3) Cimabay company presentation (4) J Med Chem. 2018 Feb 15. doi: 10.1021/acs.jmedchem.7b01285

#### **PPAR** $\gamma$ efficacy is well established in NASH

PPARγ activation by pioglitazone significantly improves steatosis, ballooning and inflammation as well as metabolic markers in NASH patients after 6 or 18 months of treatment:

| Pioglitazone (PPARγ)               | Belfort NASH study<br>6 month treatment |     |         | Cusi NASH study<br>18 month treatment |       |         |
|------------------------------------|-----------------------------------------|-----|---------|---------------------------------------|-------|---------|
|                                    | Placebo                                 | Pio | р       | Placebo                               | Pio   | р       |
| Steatosis (% patients improved)    | 38%                                     | 65% | < 0.001 | 26%                                   | 71%   | < 0.001 |
| Inflammation (% patients improved) | 29%                                     | 65% | < 0.001 | 22%                                   | 49%   | < 0.001 |
| Ballooning (% patients improved)   | 24%                                     | 54% | < 0.001 | 24%                                   | 51%   | < 0.001 |
| NASH resolution (% patients)       | -                                       | NA  | -       | 19%                                   | 51%   | < 0.001 |
| Fibrosis (mean change in score)    | -                                       | NS  | -       | 0                                     | - 0.5 | = 0.039 |

|                                                                                                         |                  | Odds Ratio           |   |  |
|---------------------------------------------------------------------------------------------------------|------------------|----------------------|---|--|
| Study or Subgroup                                                                                       | Weight           | M-H, Random, 95% CI  | M |  |
| Aithal 2009                                                                                             | 13.2%            | 7.49 [0.37, 151.50]  |   |  |
| Belfort 2006                                                                                            | 14.0%            | 16.54 [0.89, 308.98] |   |  |
| Cusi 2016                                                                                               | 13.8%            | 9.97 [0.52, 190.16]  |   |  |
| Sanyal 2004                                                                                             | 14.0%            | 1.00 [0.05, 18.57]   | _ |  |
| Sanyal 2010                                                                                             | 45.0%            | 3.28 [0.64, 16.78]   |   |  |
| Total (95% CI)                                                                                          | 100.0%           | 4.53 [1.52, 13.52]   |   |  |
| Total events                                                                                            |                  |                      |   |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 2.39, df = 4 (P = 0.66); I <sup>2</sup> = 0% |                  |                      |   |  |
| Test for overall effect: Z = 2.71 (P = 0.007)                                                           |                  |                      |   |  |
| Test for overall effect:                                                                                | 0.01 0<br>favors |                      |   |  |



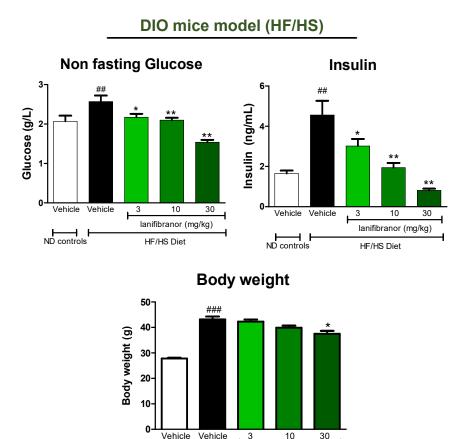

#### Pioglitazone improves advanced

**fibrosis** (stage F3-F4) as indicated by an increase in the number of NASH patients whose fibrosis stage changed from F3-F4 to F0-F2 at the end of treatment

#### PPAR $\gamma$ activity can also be completed by PPAR $\alpha$ and $\delta$ efficacy

- PPARα/δ activation by elafibranor 120mg/day leads to significant improvement of ballooning and inflammation as well as metabolic markers in NASH patients vs. placebo after 12 months of treatment
  - NASH resolution in ITT: 19% vs 12%, p = 0.045 (elafibranor 120mg, n=89; placebo, n=92)
- In patients with bNAS≥4 and randomized in centers that included in each treatment arm % patients with decrease of at least 1 point (elafibranor 120mg, n=31; placebo, n=39)
  - ▶ Steatosis: 35% vs 18%, p = 0.10
     ▶ Inflammation: 55% vs 33%, p < 0.05</li>
     ▶ Ballooning: 45% vs 23%, p = 0.02
- Patients who resolved NASH showed significant reduction in liver fibrosis while non-responders did not show any change from baseline (elafibranor 120mg, responders, n=17; non-responders, n=61)




4

#### Lanifibranor shows consistent improvements in metabolic parameters and histology while displaying anti-fibrotic activity

| Metabolic models Diet induced obesity high fat / high sucrose                                                                                                                          | NASH & NAFLD<br>models<br>Methionine Choline<br>Deficient diet (MCD)                                                                               | Fibrosis models<br>Carbon tetrachloride<br>(CCL4)                                                                      | <b>Cirrhosis models</b><br>Thiocetamide (TAA)                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Foz                                                                                                                                                                                    | / Foz                                                                                                                                              |                                                                                                                        |                                                                                                 |  |
|                                                                                                                                                                                        |                                                                                                                                                    | nt amino-acid and<br>fat diet                                                                                          |                                                                                                 |  |
| Hepatoma and muscle cells biology                                                                                                                                                      | Macrophages biology                                                                                                                                | HSC biology                                                                                                            |                                                                                                 |  |
|                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                        | Endothelial biology                                                                             |  |
| <ul> <li>Lanifibranor improves</li> <li>Insulin resistance</li> <li>Non fasting glucose</li> <li>Homa-IR</li> <li>Lipid profile</li> <li>Lanifibranor maintains body weight</li> </ul> | <ul> <li>Lanifibranor reduces</li> <li>Steatosis</li> <li>Inflammation</li> <li>Ballooning</li> <li>Lanifibranor improves<br/>NAS score</li> </ul> | Lanifibranor reduces<br>fibrosis<br>Lanifibranor inhibits<br>stellate cell activation<br>Lanifibranor reverses<br>NASH | <ul> <li>Lanifibranor reduces</li> <li>Portal pressure</li> <li>Established fibrosis</li> </ul> |  |
| 2019                                                                                                                                                                                   |                                                                                                                                                    | nventiva                                                                                                               | In Vitro<br>Confidential – Property of Inventiva S.A.                                           |  |

# Lanifibranor significantly improves insulin sensitivity without increasing body weight gain in preclinical models of NASH

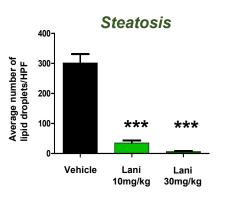
inventiva



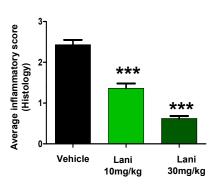
#### Foz/foz mice model HOMA 1000-100 10-1 HO \* Laniformor 10 not 40 HFD \* Lantinganor 30 marks ND Controls Body weight \*\*\* 100-\*\*\* \*\* 80 Body weight (g) 60 40 20-HED \* Bantibrarer 10 marks HO \* Laniloranor 30 not 40 ND controls

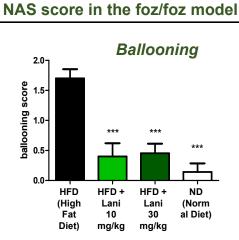
##, ###: vs ctrl vehicle p<0,01 or p<0,001 respectively \*, \*\*, \*\*\*: vs HF:HS or HFD P<0,05, P<0,01 or P<0,001 respectively

ND controls


lanifibranor (mg/kg)

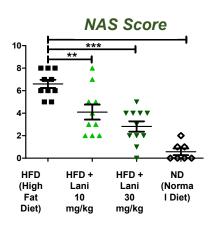
HF/HS Diet


2019

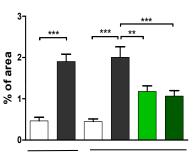

# Lanifibranor significantly reduces steatosis, inflammation, ballooning and fibrosis in preclinical models of NASH

Lanifibranor inhibits steatosis and inflammation in the mice MCD model




#### Inflammation






Lanifibranor significantly

reduces ballooning and the



Lanifibranor reverses established liver fibrosis in mice CCL4 model

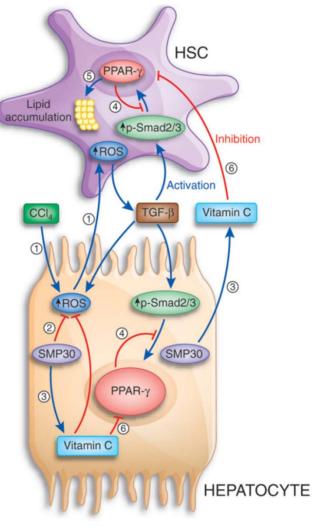


3 weeks 3 + 3 weeks

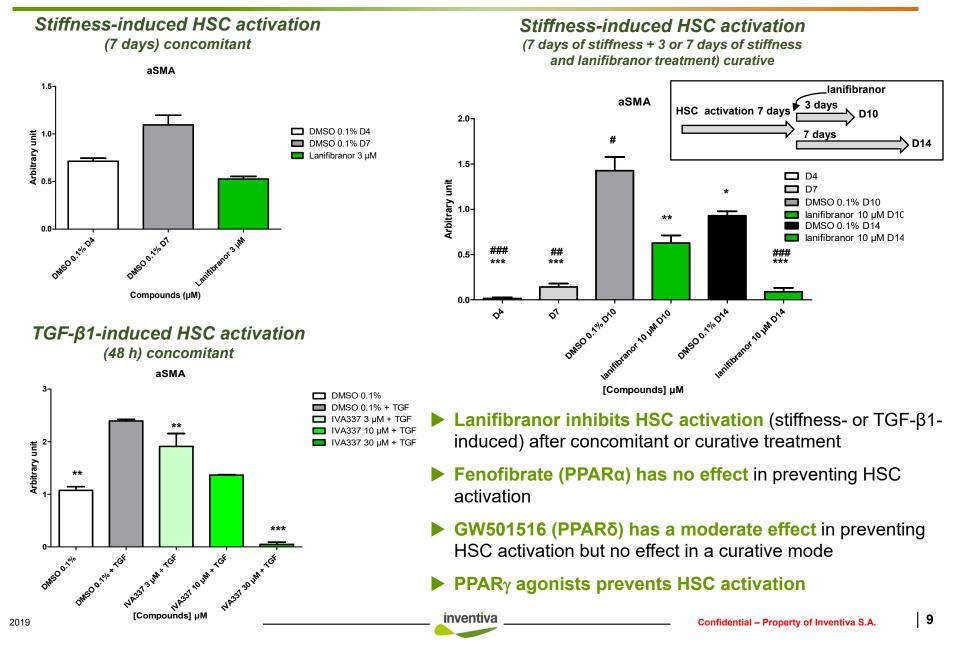
#### CCI4 model



#### Lanifibranor associated with beneficial effects on all NASH-relevant liver features

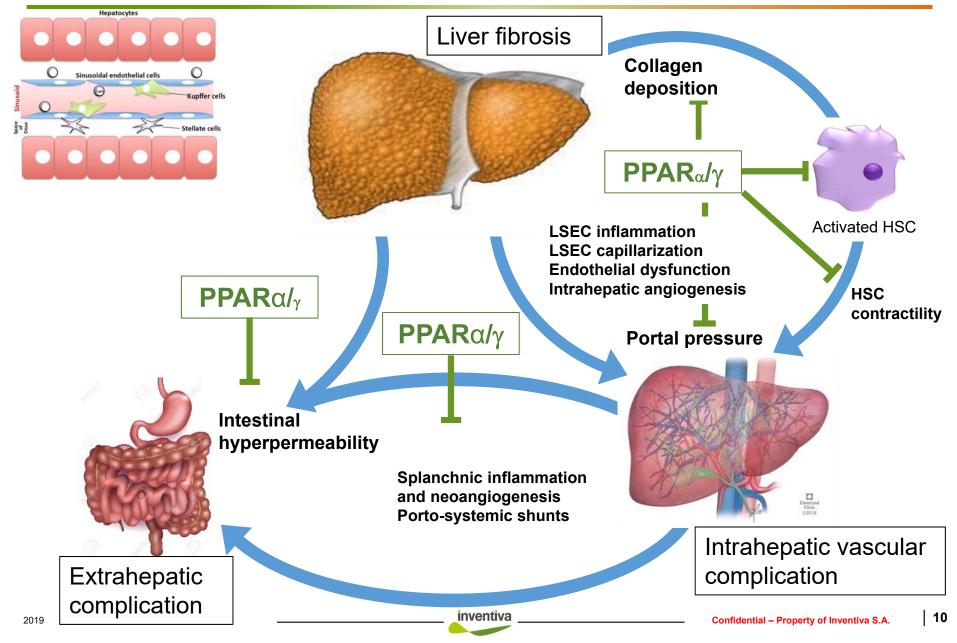

Source: Company data; The new-generation Pan-Peroxisome Proliferator-Activated Receptor Agonist IVA337 Protects the Liver From Metabolic Disorders and Fibrosis; Hepatology Communications, June 2017

inventiva


| 7

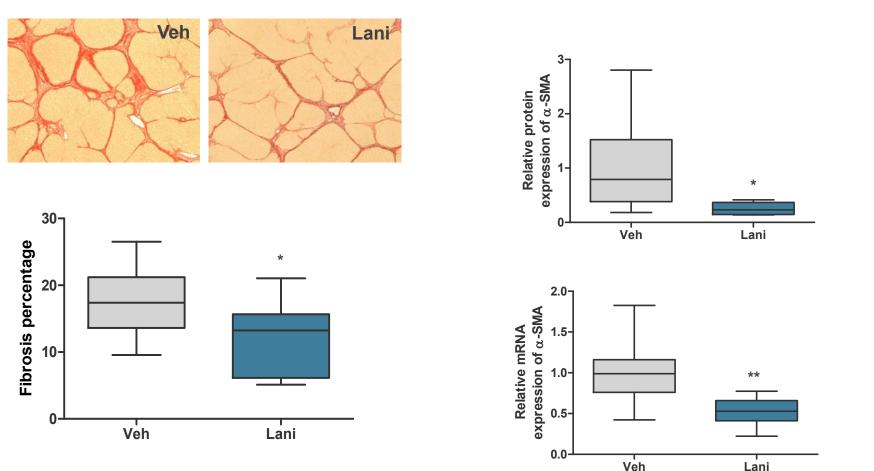
# HSCs, the ultimate effectors of fibrogenesis in the liver, are regulated by $\text{PPAR}\gamma$

- Large literature describing PPARγ as a key modulator of human HSC fate
- Activation or high expression of PPARγ maintains human HSC in a quiescent state
- Inhibition or decreased expression of PPARγ leads to human HSC activation (myofibroblasts)
- The transition from one state to another could be modulated by PPARγ alone and is reversible
- Some authors described that PPARγ inhibits HSC activation by reducing phosphoSMAD3 (Park et al. hepatology 2010 and Zhao et al. Biochem Biophys Res Commun 2006)
  - PPARα is not expressed in human HSC




#### Lanifibranor significantly inhibits human HSC activation in preventive and curative settings



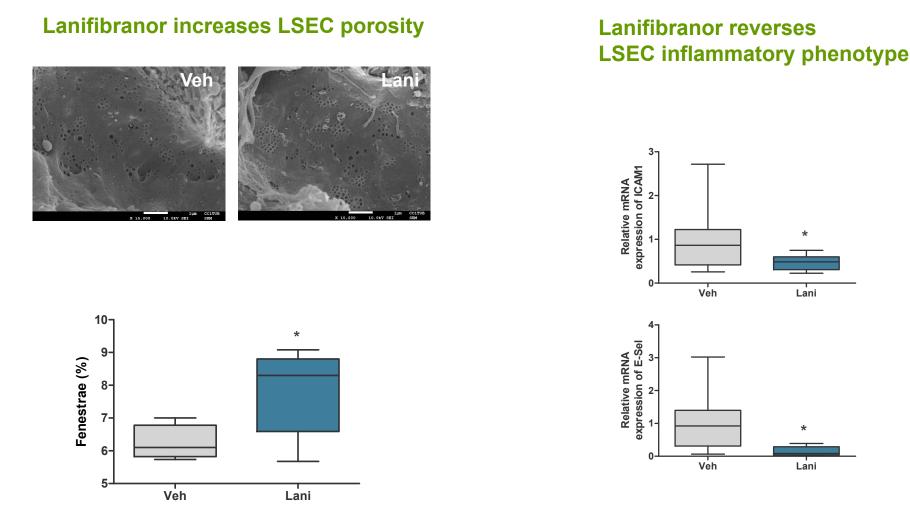

inventiva

# Dual PPAR $\alpha$ and $\gamma$ activation shows therapeutic efficacy in a preclinical model of chronic advanced liver disease



## Lanifibranor significantly reverses HSC activation and liver fibrosis in a model of advanced chronic liver disease

Lanifibranor reverses liver fibrosis




# Source: "The pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease", The Liver Meeting® 2019; **Methods.** Cirrhotic rats (due to 12-week TAA) randomly received lanifibranor (100mg/kg/day, po) or vehicle for 14 days (n=12 per group). In vivo systemic and hepatic hemodynamics (mean arterial pressure, MAP; portal pressure, PP; portal blood flow, PBF; and hepatic vascular resistance, HVR), serum AST, ascites degree (0-III), liver inflammation (IL-6 & IL-10), fibrosis (Sirius red staining, collagen I, MMPs & TIMPs), hepatic stellate cells activation (a-SMA, p-moesin and desmin) and liver sinusoidal endothelial cells de-differentiation (ICAM-1, VCAM-1, E-Sel, and sinusoidal porosity through scanning electron microscopy) were determined.

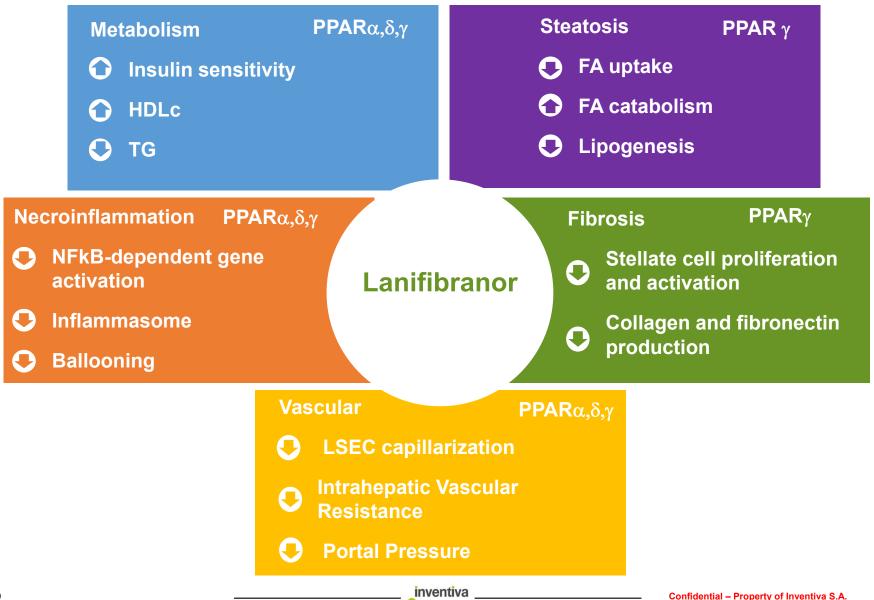
#### inventiva

Lanifibranor reverses HSC activation

### Lanifibranor significantly reverses LSEC capillarization in a model of advanced chronic liver disease



Source: "The pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease", The Liver Meeting® 2019; **Methods**. Cirrhotic rats (due to 12-week TAA) randomly received lanifibranor (100mg/kg/day, po) or vehicle for 14 days (n=12 per group). In vivo systemic and hepatic hemodynamics (mean arterial pressure, MAP; portal pressure, PP; portal blood flow, PBF; and hepatic vascular resistance, HVR), serum AST, ascites degree (0-III), liver inflammation (IL-6 & IL-10), fibrosis (Sirius red staining, collagen I, MMPs & TIMPs), hepatic stellate cells activation (a-SMA, p-moesin and desmin) and liver sinusoidal endothelial cells de-differentiation (ICAM-1, VCAM-1, E-Sel, and sinusoidal porosity through scanning electron microscopy) were determined.


2019

### Lanifibranor significantly improves hepatic vascular resistance and portal pressure in a model of advanced chronic liver disease

|                     | Vehicle (n=12) | Lanifibranor (n=12) | P-value   |
|---------------------|----------------|---------------------|-----------|
| PP (mmHg)           | 13.1 ± 0.4     | 11.2 ± 0.5          | P<0.01    |
| PBF (mL/min)        | 19.0 ± 1.7     | 23.5 ± 2.1          | NS (0.09) |
| IVR (mmHg.min/mL)   | 0.75 ± 0.1     | $0.53 \pm 0.06$     | P<0.05    |
| MAP (mmHg)          | 81 ± 3         | 84 ± 2              | NS        |
| AST (U/MI)          | 155.8 ± 51.2   | 107.8 ± 15.6        | P<0.01    |
| N rats with ascites | 8              | 2                   | P <0.05   |

\_\_\_\_\_

#### Lanifibranor: a mechanism of action addressing all the key features of NASH



| 14

#### Lanifibranor shows a favorable safety profile

#### Safety package

- 6 month tox in rodents
- ✓ 6 month tox data in primates
- ✓ 12 month tox data in primates
- ✓ 2 year carcinogenicity studies in rats and mice
- ✓ 200+ healthy volunteers treated in Phase I trials
- ✓ 47 T2DM patients treated in Phase IIa study
- ✓ 97 SSc patients treated in a Phase IIb

#### Recently generated safety data

- ✓ Fourth and last DSMB for NATIVE trial in NASH recommending to continue the trial as planned based on safety data from 228 patients, including 139 patients treated for the whole study period
- ✓ After review of carcinogenicity studies, FDA has lifted PPAR class clinical hold and allowed long-term clinical studies in NASH with lanifibranor





### Native Phase IIb study in NASH

Boston November 2019





#### Trial design (clinicaltrials.gov identifier: NCT03008070)

#### **Principal investigators**

- Prof. Sven Francque (Antwerp University, Belgium)
- Prof. Manal Abdelmalek (Duke University, USA)

#### Randomisation

- 1/1/1, stratification on T2DM patients
- Study powered with 75 patients per group
- Central reading

#### Status

- Recruitment completed with 247 patients randomized
- ✓ 4 positive DSMB reviews recommending to continue the study without any changes

#### Inclusion criteria

- Liver biopsy
- Severe patients *i.e.* combined inflammation+ballooning score of 3 or 4
- Steatosis score  $\geq$  1 and fibrosis score < 4 (no cirrhosis)

#### **Primary endpoint**

Decrease from baseline ≥ 2 points of the inflammation+ballooning score without worsening of fibrosis

#### Key secondary endpoints

- Decrease of ≥ 2 points in NAS
- Resolution of NASH (to NAFL: steatosis ± mild inflammation)
- Change in fibrosis score
- Change in liver enzymes, inflammatory markers, glucose metabolism parameters, plasma lipids parameters, adiponectin
- Safety

#### 225 patients treated for 24 week + 4 week safety follow-up

Double blind, randomized, placebo-controlled



Lanifibranor AASLD 19 Presentation



#### **Primary end point**

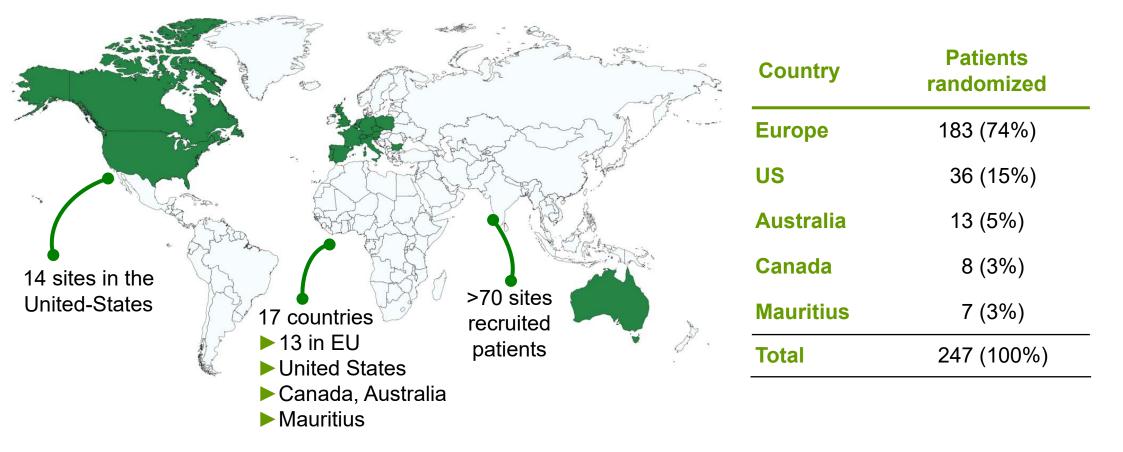
Decrease from baseline to week 24 of at least 2 points of the combined inflammation+ballooning score without worsening of fibrosis

- Main analysis: evaluation of treatment effect 1200mg vs. placebo and 800mg vs. placebo
- Analyses by sub-groups
  - Diabetic vs. non-diabetics
  - BMI at baseline (obese vs. non-obese)
  - Metabolic syndrome at baseline
  - Biopsy length at baseline
  - Fibrosis at baseline (F0-F1, F2-F3)
- Evaluation of dose effect: 1200mg vs. 800mg
- Evaluation of country- and site-effect

# NASH TRIAL TO VALIDATE IVA337 EFFICACY

#### Key secondary end points

- NASH improvers
  - Decrease from baseline to week 24 of  $\geq$  2 points of the NAS CRN score with no worsening of fibrosis
- Resolution of NASH with no worsening of fibrosis
- ► Improvement of fibrosis by ≥ 1 stage without worsening of NASH


#### Other secondary end points

- Change in ISHAK-F: improvement / no worsening
- Change in parameters of glucose metabolism (fasting glucose, insulin, HOMA index, HbA1c...)
- Change in liver tests (ALT, AST, GGT, Alkaline Phosphatase, Total Bilirubin)
- Change in main plasma lipid parameters (TC, HDL-C, calculated LDL-C, TG...)
- Change in markers of inflammation (fibrinogen, hs-CRP, alpha2 macroglobulin, haptoglobin...)
- Change in fibrosis markers (TIMP-1, TIMP-2, Hyaluronic acid, P3NP, NFS, FIB-4 score, ELF score, Pro-C3…)
- Change in other relevant biochemistry markers (Plasma Iron, Transferrin, Ferritin)
- Change in adiponectin

### **NATIVE trial in NASH patients fully recruited**



#### 247 patients randomized, exceeding the initial target of 225 patients



- Patients with moderate/severe NASH recruited: ~72% with NAS ≥ 6 and ~76% F2 or F3
- ~40% have type 2 diabetes allowing to conduct the planned sub-analyses
- ▶ 167 patients<sup>(1)</sup> had already completed the six-month study confirming that the treatment is well tolerated
- Results expected first-half 2020

(1) Database extraction October 8

### **NATIVE trial: baseline characteristics**



| Parameters                          |                                 | Patients without<br>diabetes<br>(N = 148 ; 60%) | Patients with<br>diabetes<br>(N = 99 ; 40%) | Total<br>(N = 247 ; 100%) |  |
|-------------------------------------|---------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------|--|
| Gender                              | Female                          | 57%                                             | 60%                                         | 58%                       |  |
|                                     | Male                            | 43%                                             | 40%                                         | 42%                       |  |
| Age                                 | Mean ± SD                       | $51.8 \pm 13.5$                                 | $56.3 \pm 10.4$                             | 53.6 ± 12.5               |  |
|                                     | Median                          | 54.0                                            | 57.0                                        | 55.0                      |  |
|                                     | Min ; Max                       | 20 ; 76                                         | 28 ; 77                                     | 20 ; 77                   |  |
| Weight (kg)                         | $\textbf{Mean} \pm \textbf{SD}$ | $93.5\pm19.0$                                   | 92.8 ± 18.8                                 | $93.2\pm18.9$             |  |
|                                     | Median                          | 91.0                                            | 90.0                                        | 91.0                      |  |
|                                     | Min ; Max                       | 51;142                                          | 55 ; 145                                    | 51 ; 145                  |  |
| BMI (kg/m²)                         | $\textbf{Mean} \pm \textbf{SD}$ | $32.8 \pm 5.5$                                  | $33.0 \pm 5.3$                              | $32.9 \pm 5.4$            |  |
|                                     | Median                          | 32.2                                            | 32.9                                        | 32.4                      |  |
|                                     | Min ; Max                       | 21 ; 45                                         | 23 ; 44                                     | 21 ; 45                   |  |
| Male waist                          | $\textbf{Mean} \pm \textbf{SD}$ | $109.6 \pm 12.6$                                | $112.2\pm12.2$                              | $110.6\pm12.4$            |  |
| circumference (cm)                  | Median                          | 108.0                                           | 110.0                                       | 110.0                     |  |
|                                     | Min ; Max                       | 88 ; 134                                        | 89 ; 142                                    | 88 ; 142                  |  |
| emale waist                         | $\textbf{Mean} \pm \textbf{SD}$ | $104.8 \pm 13.5$                                | $105.7\pm12.0$                              | $105.2\pm12.9$            |  |
| circumference (cm)                  | Median                          | 106.0                                           | 106.0                                       | 106.0                     |  |
|                                     | Min ; Max                       | 76 ; 139                                        | 75 ; 138                                    | 75 ; 139                  |  |
| Fibrosis Score (%)                  | F0 – F1                         | 27%                                             | 20%                                         | 24%                       |  |
|                                     | F2                              | 44%                                             | 36%                                         | 41%                       |  |
|                                     | F3                              | 29%                                             | 43%                                         | 35%                       |  |
| Lanifibration AASLD 19 Procentation |                                 | inventiva                                       |                                             | Durante                   |  |





| Parameters                                                               | <b>DSMB # 1</b> | <b>DSMB # 2</b> | <b>DSMB # 3</b> | <b>DSMB # 4</b> |
|--------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| Date of DSMB meeting                                                     | June 2018       | October 2018    | March 2019      | September 2019  |
| <pre># patients reviewed / % of total patients treated</pre>             | 52 / 21%        | 94 / 38%        | 156 / 63%       | 227 / 92%       |
| # patients having finished the<br>study / % of total patients<br>treated | 18 / 7%         | 36 / 15%        | 86 / 35%        | 139 / 57%       |
| DSMB conclusion: continue study as planned                               | 1               |                 |                 |                 |



#### Lanifibranor Development in NASH

Dr. Ken Cusi Slides

November 9, 2019







#### **Treatment of NASH: Role of PPARs**

#### 1. The diagnosis gap:

- ADA's 2019 "call to action": NAFLD as a public health problem
- Looking back: Analogies to diabetic nephropathy

#### 2. Treatment of NAFLD:

- Current landscape:
  - Vitamin E, GLP-1RA? and pioglitazone

#### - The future:

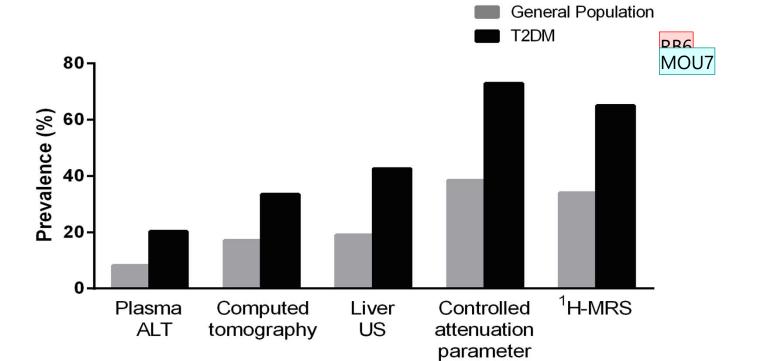
- Brief overview of novel agents
- PPARs: Targeting NASH + "cardiometabolic" risk (T2DM, CVD)

T2DM, type 2 diaberes mellitus; CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist.



#### drsa MOU6

4. Comprehensive Medical Evaluation and Assessment of Comorbidities: *Standards of Medical Care in Diabetes—2019* Diabetes Care 2019;42(Suppl. 1):S34-S45 | https://doi.org/10.2337/dc19-S004


#### Recommendation

(page S40)

4.14 Patients with type 2 diabetes or prediabetes and elevated liver enzymes (alanine aminotransferase) or fatty liver on ultrasound should be evaluated for presence of nonalcoholic steatohepatitis and liver fibrosis. C

ADA. Diabetes Care 2019;42 (Suppl 1):S34-45

Management of Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes: A Call to Action





Bril and Cusi. Diabetes Care 2017;40:419-30

UF FLORIDA

College of Medicine



#### NASH: A "new" public health problem

|                           | DM nephropathy<br>in the 80's   | Osteoporosis<br>in the 90's     | NASH<br>in 2019                                                          |
|---------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------|
| Long natural<br>history   | Yes                             | Yes                             | Yes                                                                      |
| High<br>prevalence?       | Yes                             | Yes                             | Yes                                                                      |
| Major cause of morbidity? | Yes                             | Yes                             | Cirrhosis, HCC, CVD                                                      |
| Increased<br>mortality?   | Yes                             | Yes                             | Yes                                                                      |
| Diagnosis                 | Microalbuminuria                | BMD                             | No great test yet                                                        |
| Any treatments?           | Not initially,<br>but yes today | Not initially,<br>but yes today | None FDA-approved RBS<br>Weight loss, vitamin E<br>pioglitazone, GLP-1RA |

BMD, bone mineral density; CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist; HCC, hepatocellular carcinoma.

(Cusi, 2019 - unpublished)



#### **Treatment of NAFLD: A Call to Action**

- 1. The diagnosis gap:
  - ADA 2019: a call to action: NAFLD as a public health problem
  - Looking back: Analogies to diabetic nephropathy

#### 2. Treatment of NAFLD:

- Current landscape:
  - Vitamin E, GLP-1RA? and pioglitazone

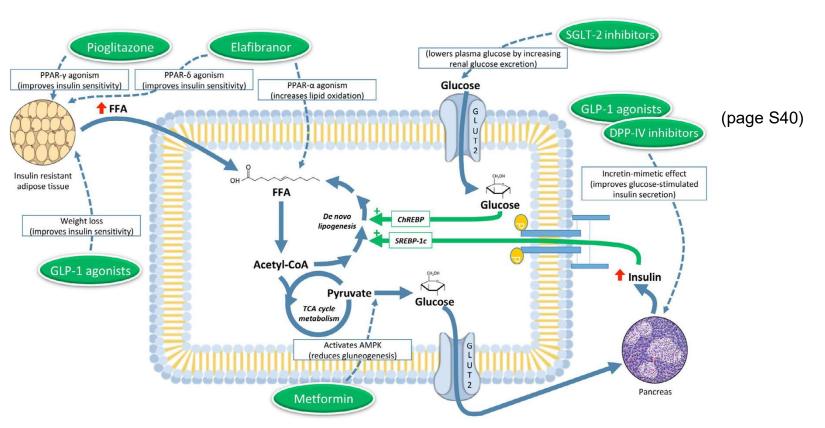
CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist.



### The Diagnosis and Management of NAFLD:

Practice Guidance From the American Association for the Study of Liver Diseases (AASLD) 2018

#### **Guidance statements – Weight Loss and Exercise**


- Weight loss (#21): 3%-5% needed to improve steatosis, but 7%-10% minimal need to improve the majority of the histopathological features of NASH, including fibrosis.
- **Exercise (#22):** Exercise alone may prevent or reduce steatosis, but its ability to improve other aspects of liver histology remains unknown
- Bariatric surgery (#29-31):
  - · Can be considered in otherwise eligible obese individuals with NAFLD or NASH
  - Premature to consider bariatric surgery as an established option to treat NASH
  - The type, safety, and efficacy of bariatric surgery are not established in obese individuals with cirrhosis from NAFLD
  - In patients with compensated NASH or cryptogenic cirrhosis, bariatric surgery may be considered on a case-by-case basis

CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist.

Chalasani et al, Hepatology 2018;67:328-57



#### **Potential Targets of Agents that Reduce Insulin Resistance**



Khan, Bril, Cusi, Newsome. Hepatology 2019



#### **Effect of Liraglutide in Patients with T2DM**

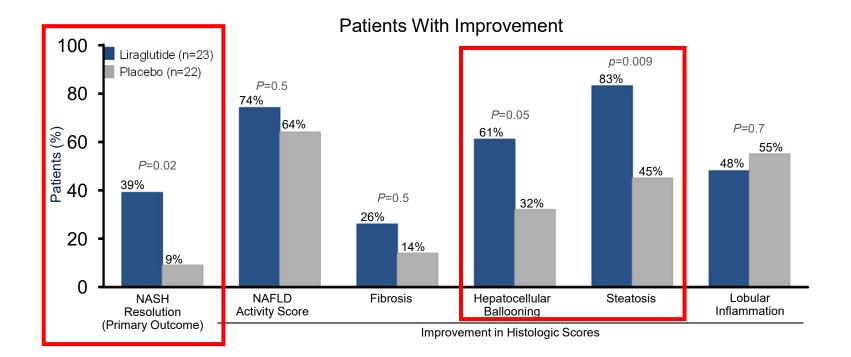
#### Table 2. Effect of liraglutide in NAFLD

|                              |    |                     |                           | Main study results |              |           |  |
|------------------------------|----|---------------------|---------------------------|--------------------|--------------|-----------|--|
| Author †                     | n  | Duration<br>(weeks) | Comparator                | Weight             | ALT          | Liver fat |  |
| Open label studies           |    |                     |                           |                    |              |           |  |
| Ohki et al, Sci World J 2012 | 82 | 74                  | Sitagliptin, pioglitazone | 1                  | ţ            | n/a       |  |
| Eguchi, Hepatol Res 2015     | 19 | 24                  | Lifestyle                 | 1                  | Ļ            | 1.        |  |
| Tang et al, 2015             | 35 | 12                  | Insulin                   | 1                  | unchanged    | unchanged |  |
| Feng et al, 2017             | 87 | 24                  | Gliclazide, metformin     | 1                  | Ļ            | 1         |  |
| Bouchi et al, 2017§          | 17 | 24                  | Insulin alone             | 1                  | Ļ            | 1         |  |
| Petit et al, 2017            | 68 | 24                  | Insulin alone             | 1                  | Ļ            | 1         |  |
| Matikainen et al, 2018       | 22 | 16                  | Lifestyle                 | Ļ                  | not reported | 1         |  |
| RCTs                         |    |                     |                           |                    |              |           |  |
| Smits et al, 2016            | 18 | 12                  | Sitagliptin or placebo    | unchanged          | unchanged    | unchanged |  |
| Armstrong et al, 2016        | 52 | 48                  | placebo                   | 1                  | ţ            | 1 ***     |  |
| Vanderheiden et al, 2016 §   | 71 | 24                  | Insulin alone             | 1                  | Ļ            | 1         |  |
| Frossing et al, 2018         | 72 | 26                  | placebo                   | 1                  | ţ            | ļ         |  |
|                              |    |                     |                           |                    |              |           |  |

Statistically significant changes vs. comparison(s) indicated by arrows

\*10 of 19 had a repeat liver biopsy; NAS score improved in 6. \*\* Reduced more vs gliclazide but not metformin. \*\*\* Improvement on histology (NAS score) greater with liraglutide on paired liver biopsies. §Liraglutide plus insulin vs insulin alone.

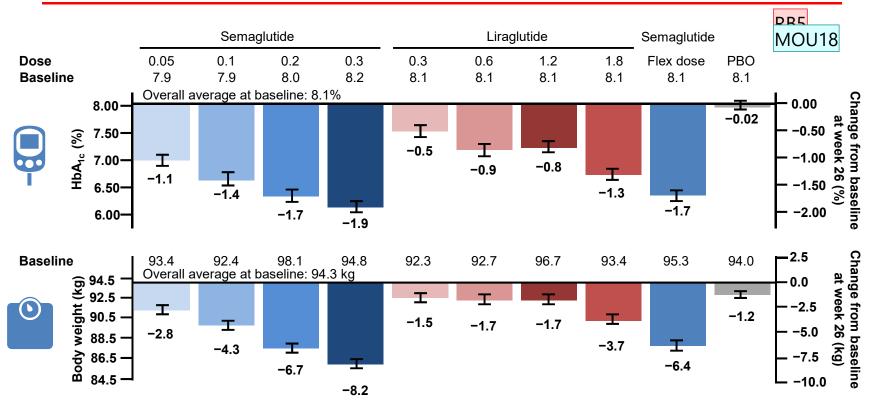
Cusi. Hepatology 2019;69:2318-22


....

.....

Liraclutide is not approved for treatment of NAFLD or NASH. .




### LEAN Study: Changes in Histologic Features at Week 48



LEAN: Liraglutide Efficacy and Action in NASH.

Armstrong et al. Lancet 2016;387:679-690





#### Semaglutide vs. Liraglutide

PBO, placebo.

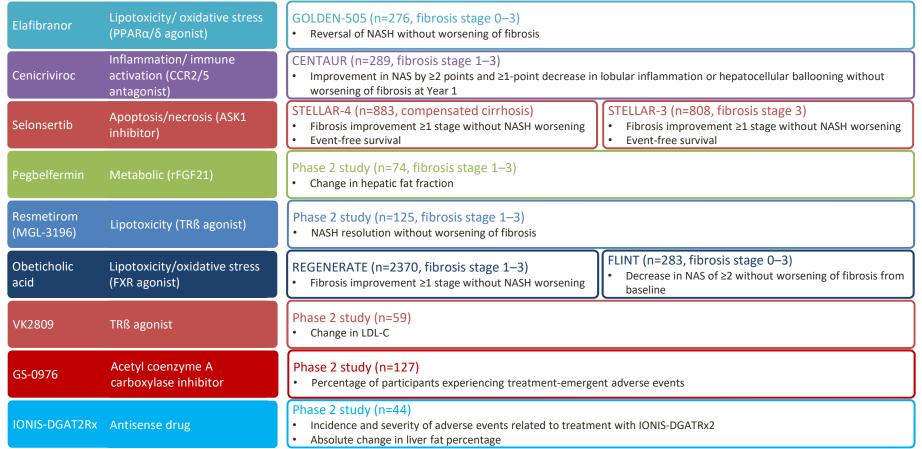
Lingay et al, Diabetes Care 2018;41:1926-37



#### **Treatment of NAFLD: A Call to Action**

- 1. The diagnosis gap:
  - ADA 2019: a call to action: NAFLD as a public health problem
  - Looking back: Analogies to diabetic nephropathy

#### 2. Treatment of NAFLD:


- Current landscape:
  - Limited: Vitamin E, GLP-1RA? and pioglitazone

#### - The future:

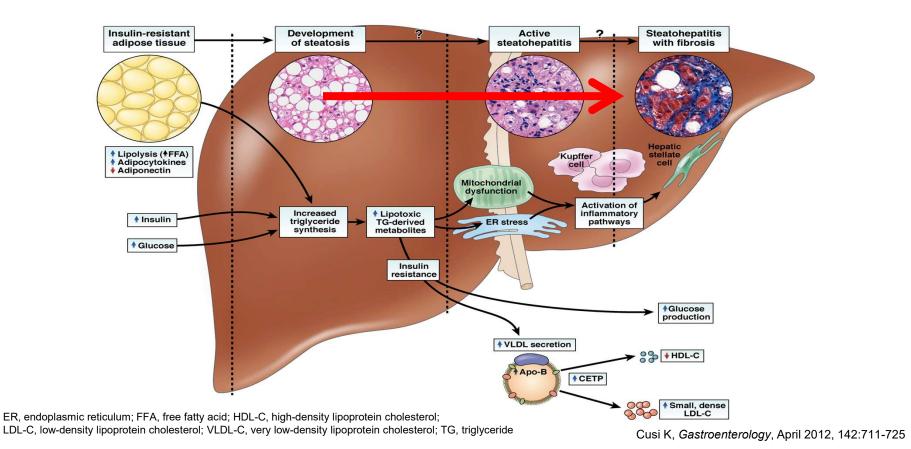
• New agents: which? Which combination therapy?

CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist.

### MOU24NASH agents in clinical development

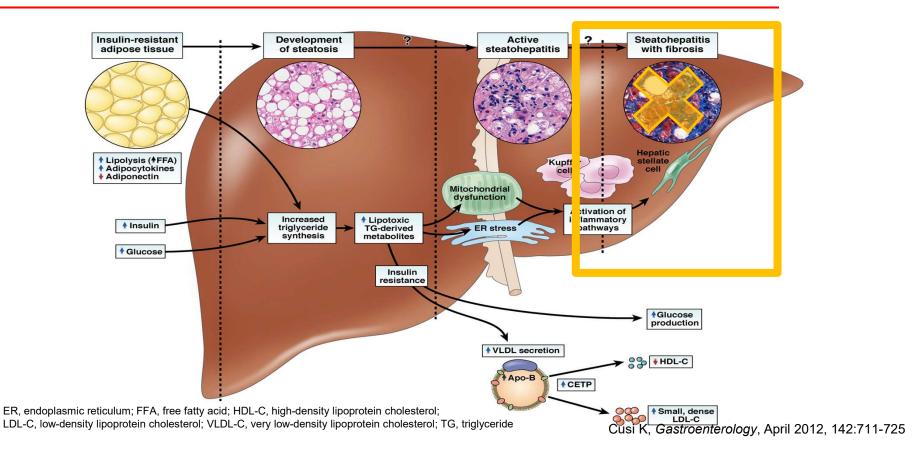


ASK, apoptosis signal-regulating kinase; CCR, CC chemokine receptor; PPAR, peroxisome proliferator-activated receptor; FXR, farnesoid X receptor; TR, thyroid hormone.


ClinicalTrials.gov NCT01694849; ClinicalTrials.gov NCT02217475; ClinicalTrials.gov NCT03053050; ClinicalTrials.gov NCT03053063; ClinicalTrials.gov NCT02413372; ClinicalTrials.gov NCT02912260;

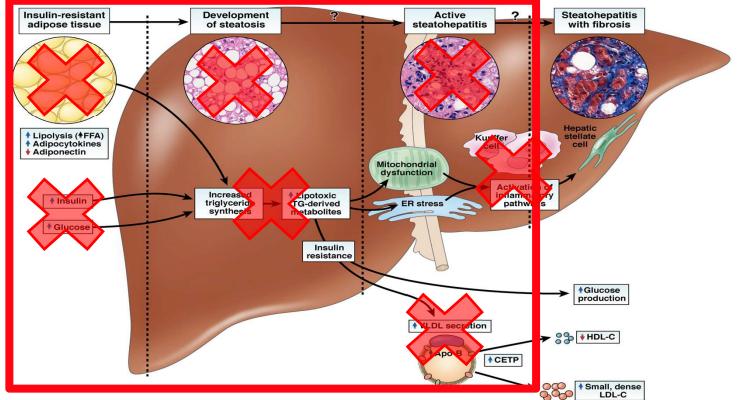
ClinicalTrials.gov NCT02548351; ClinicalTrials.gov NCT01265498; ClinicalTrials.gov NCT01265498, NCT02784444; ClinicalTrials.gov, NCT02462967; ClinicalTrials.gov, NCT02279524.






#### From Obesity to Lipotoxicity (NASH)






## Downstream approach to NASH: The "Antifibrotic Approach"





## Upstream approach to NASH: The "Insulin-Sensitizer Approach"



ER, endoplasmic reticulum; FFA, free fatty acid; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-density lipoprotein cholesterol; TG, triglyceride

Cusi K, Gastroenterology, April 2012, 142:711-725

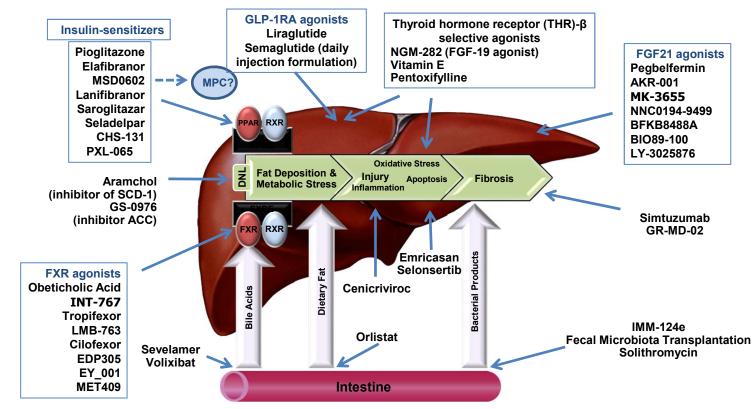


## **Treatment of NASH: Role of PPARs**

#### 1. What is the role of the diabetologist?

- A call to action: NAFLD as a public health problem
- Looking back: Analogies to diabetic nephropathy or osteoporosis

#### 2. Treatment of NAFLD:


- Current options:
  - Weight loss, vitamin E, GLP-1RA and pioglitazone

#### - The future:

• New agents? Combination therapy?



## **Current and Potential Therapeutic Targets in NASH**



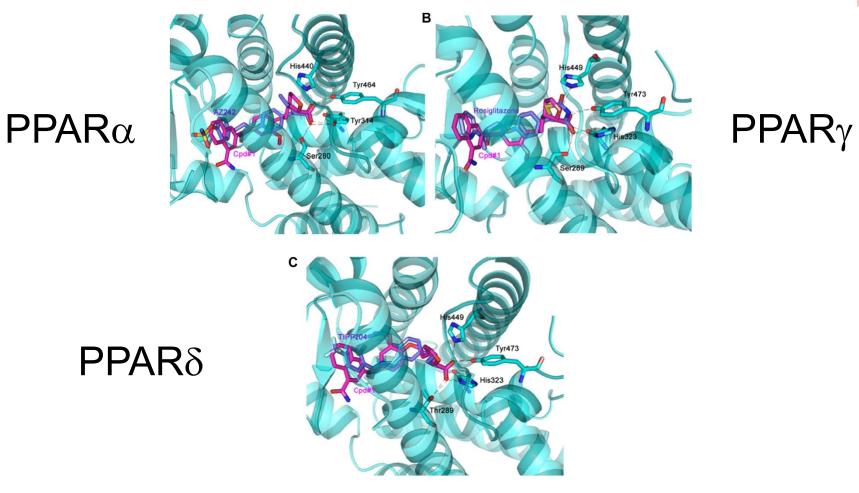
ACC, acetyl-CoA carboxylase; DNL, de novo lipogenesis.

Adapted from Rotman et al. Gut. 2017;66:180–190



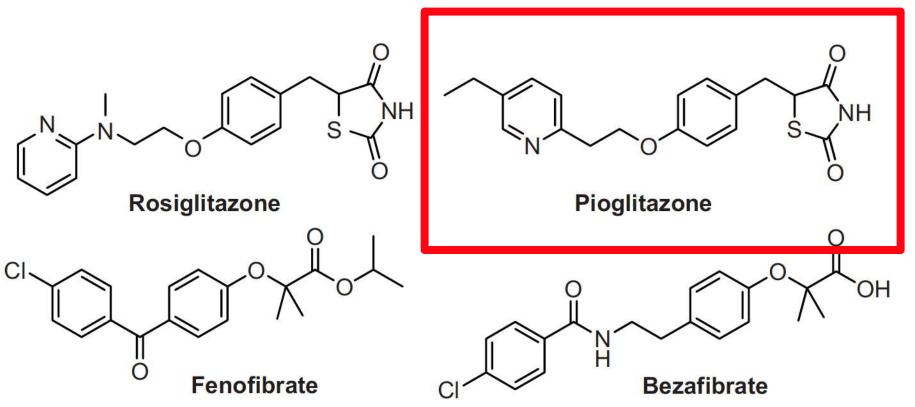
# **FXR Agents under Development**

| Company   | Compound   | Development phase            | Dosing<br>frequency | Current patient<br>type       | Notes                                  |
|-----------|------------|------------------------------|---------------------|-------------------------------|----------------------------------------|
| Intercept | OCA        | Phase 3                      | QD                  | F2–F3 (+ high-risk<br>F1); F4 | Bile acid derivative                   |
| Novartis  | Tropifexor | Phase 2b, 48-week recruiting | QD                  | F2-F3                         | Non-bile acid                          |
| Gilead    | Cilofexor  | Phase 2, 48-week recruiting  | QD                  | F3-F4                         | Non-bile acid,<br>gut targeted         |
| Novartis  | LMB-763    | Phase 2, 12-week recruiting  | QD                  | F1–F4c                        | Non-bile acid                          |
| Enanta    | EDP-305    | Phase 2, 12-week             | QD                  | F1-F3                         | Bile acid isostere                     |
| Enyo      | EYP001     | Phase 2a, 12-week            | QD                  | F2F3                          | Non-bile acid                          |
| Intercept | INT-767    | Phase 1                      | n.a.                | n.a.                          | Bile acid derivative,<br>dual FXR/TGR5 |
| Metacrine | MET409     | Phase 1                      | n.a.                | n.a.                          | Non-bile acid                          |


OCA, obeticholic acid; QD, once-daily.



# **FGF21 Agents under Development**


| Name                   | Company                | Description              | Focus   | Status                            |
|------------------------|------------------------|--------------------------|---------|-----------------------------------|
| Pegbelfermin           | BMS                    | PEG-FGF21                | NASH    | Ph2b                              |
| AKR-001 (AMG876)       | Akero (formerly Amgen) | Fc-FGF21 fusion          | NASH    | Ph2 planned<br>(Ph1 data in T2DM) |
| MK-3655 (NGM313)       | NGM Bio / Merck        | KLB / FGFR1c agonist mAb | NASH    | Ph2 planned                       |
| NNC0194-9499           | Novo Nordisk           | FGF21 analog             | Obesity | Ph1 (PCD Apr 2019)                |
| BFKB8488A/ RG7992      | Genentech              | KLB / FGFR1c agonist mAb | T2DM    | Ph1 (PCD June 2019)               |
| BIO89-100/<br>TEV47948 | 89Bio                  | GlycoPEG-FGF21           | NASH    | Ph1 underway                      |
| LY-3025876             | Lilly                  | Engineered FGF21 variant | T2DM    | Ph1 completed 2014                |





Wang et al, Drug Design, Development and Therapy 2014:8 2255-2262





Wang et al, Drug Design, Development and Therapy 2014:8 2255-2262

The NEW ENGLAND JOURNAL of MEDICINE NEJM 2006, 355, 2297-2307

ORIGINAL ARTICLE

A Placebo-Controlled Trial of Pioglitazo in Subjects with Nonalcoholic Steatohepa

Annals of Internal Medicine

#### ORIGINAL RESEARCH

Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus A Randomized, Controlled Trial

Kenneth Cusi. MD; Beverly Orsak, RN; Fernando Bril, MD; Romina Lomonaco, MD; Joan Hecht, RN; Carolina Ortiz-Lopez, MD; Fermin Tio, MD; Jean Hardies, PhD; Celia Darland, RD; Nicolas Musi, MD; Amy Webb, MD; and Paola Portillo-Sanchez, MD

Background: The metabolic defects of nonalcoholic steatohepatitis (NASH) and prediabetes or type 2 diabetes mellitus BA: (T2DM) seem to be specifically targeted by pioglitazone. How-

Nc ever, information about its long-term use in this population is limited. me

Objective: To determine the efficacy and safety of long-term ste pioglitazone treatment in patients with NASH and prediabetes or

Design: Randomized, double-blind, placebo-controlled trial, (ClinicalTrials.gov: NCT009944

Setting: University hospital Participants: Patients (n = 1

biopsy-proven NASH were i tion and outpatient clinics. Intervention: All patients w

(500-kcal/d deficit from weig then randomly assigned to pic 18 months, followed by an pioglitazone treatment.

Measurements: The primar least 2 points in the nonalcohe (NAS) (in 2 histologic categor Secondary outcomes include patic triglyceride content mea proton spectroscopy, and me

Results: Among patients randomly assigned to pioglitazone, 58% achieved the primary outcome (treatment difference, 41 percentage points [95% Cl, 23 to 59 percentage points]) and 51% had resolution of NASH (treatment difference, 32 percentage points [CI, 13 to 51 percentage points]) (P < 0.001 for each). Pioglitazone treatment also was associated with improvement in ment difference, -0.5 [Cl, -0.9 to 0.0]; P = 0.039); reduced hepatic triglyceride content from 19% to 7% (treatment difference, -7 percentage points [Cl, -10 to -4 percentage points]; P <

tazone, Vitamin E, or Placebo Nonalcoholic Steatohepatitis

The NEW ENGLAND JOURNAL of MEDICINE

NEJM 2010:362:1675-1685

ORIGINAL ARTICLE

M.D., Naga Chalasani, M.B., B.S., Kris V. Kowdley, M.D., 1, M.D., Anna Mae Diehl, M.D., Nathan M. Bass, M.D., Ph.D., euschwander-Tetri, M.D., Joel E. Lavine, M.D., Ph.D., Ph.D., Aynur Unalp, M.D., Ph.D., Mark Van Natta, M.H.S., individual histologic scores, including the fibrosis score (treat ie Clark, M.D., M.P.H., Elizabeth M. Brunt, M.D., I E. Kleiner, M.D., Ph.D., Jay H. Hoofnagle, M.D., ricia R. Robuck, Ph.D., M.P.H., for the NASH CRN\*

Role of Vitamin E for Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial

Diabetes Care 2019;42:1-8 | https://doi.org/10.2337/dc19-0167

Fernando Bril,<sup>1</sup> Diane M. Biernacki,<sup>1</sup> Srilaxmi Kalavalapalli,<sup>1</sup> Romina Lomonaco,1 Sreevidya K. Subbarayan,<sup>1</sup> Jinping Lai,<sup>2</sup> Fermin Tio,<sup>3</sup> Amitabh Suman,<sup>4</sup> Beverly K. Orsak,<sup>5</sup> Joan Hecht,<sup>6</sup> and Kenneth Cusi<sup>1,7</sup>

UF FLORIDA College of Medicine RR36

Role of Vitamin E for Nonalcoholic MOU27 Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial

Fernando Bril,<sup>1</sup> Diane M. Biernacki,<sup>1</sup> Srilaxmi Kalavalapalli,<sup>1</sup> Romina Lomonaco,<sup>1</sup> Sreevidya K. Subbarayan,<sup>1</sup> Jinping Lai,<sup>2</sup> Fermin Tio,<sup>3</sup> Amitabh Suman,<sup>4</sup> Beverly K. Orsak,<sup>5</sup> Joan Hecht,<sup>6</sup> and Kenneth Cusi<sup>1,7</sup>



Diabetes Care 2019;42:1-8 | https://doi.org/10.2337/dc19-0167

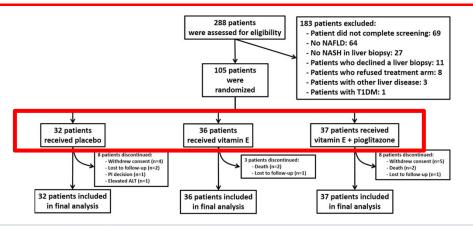
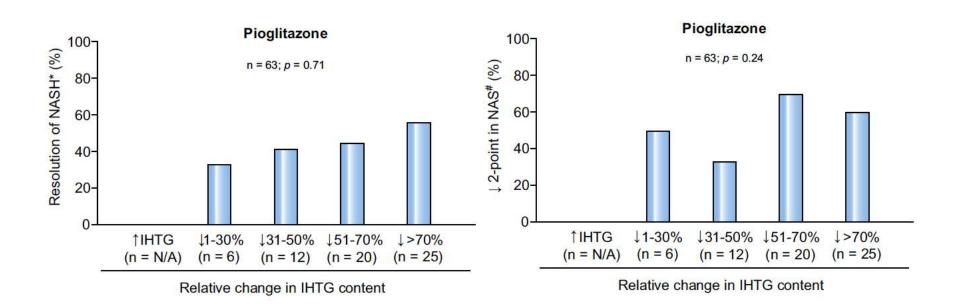



Table 2-Primary and secondary histological outcomes

|                                                                | Placebo<br>(n = 32) | Vitamin E<br>(n = 36) | P value vs.<br>placebo | Vitamin E +<br>pioglitazone<br>(n = 37) | P value vs.<br>placebo |
|----------------------------------------------------------------|---------------------|-----------------------|------------------------|-----------------------------------------|------------------------|
| Primary outcome: reduction of $\geq 2$ points in NAS (from two |                     |                       |                        |                                         |                        |
| different parameters), without worsening of fibrosis           |                     |                       |                        |                                         |                        |
| Prespecified analysis (noncompleters considered as             |                     |                       |                        |                                         |                        |
| failures)                                                      | 6 (19)              | 11 (31)               | 0.26                   | 20 (54)                                 | 0.003                  |
| Multiple imputation of missing data                            | 7 (22)              | 13 (36)               | 0.18                   | 24 (65)                                 | <0.001                 |
| Resolution of NASH without worsening of fibrosis               |                     |                       |                        |                                         |                        |
| Prespecified analysis (noncompleters considered as             |                     |                       |                        |                                         |                        |
| failures)                                                      | 4 (12)              | 12 (33)               | 0.04                   | 16 (43)                                 | 0.005                  |
| Multiple imputation of missing data                            | 5 (17)              | 14 (40)               | 0.04                   | 20 (54)                                 | 0.002                  |

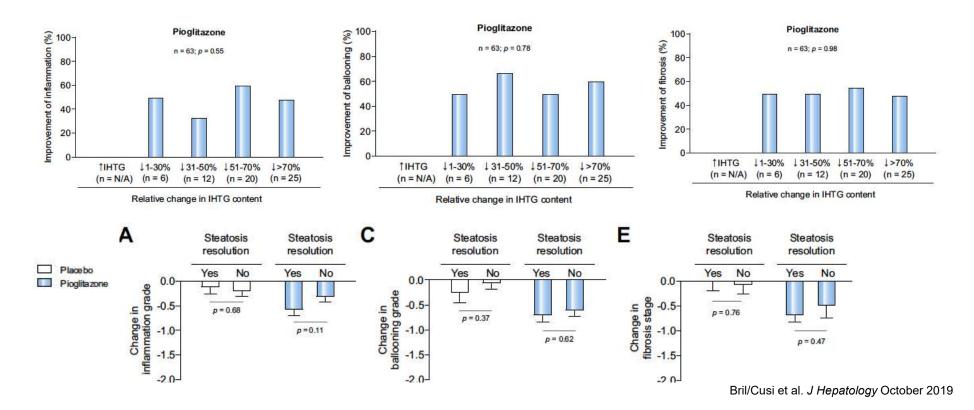



| Name          | Target                   | Major Clinical Effects       | Effects in NASH | Cardiovascular |
|---------------|--------------------------|------------------------------|-----------------|----------------|
| Pioglitazone  | $PPAR\gamma/\alpha-MPC$  | Glucose/lipids, inflammation | ++++            | +++*           |
| Rosiglitazone | ΡΡΑRγ                    | Glucose/HDL-C, inflammation  | + (steatosis)   | _ **           |
| Elafibranor   | ΡΡΑRα/δ                  | Glucose/lipids, inflammation | Phase 2/3       | +?             |
| MSD0609       | $PPAR\gamma - MPC$       | Glucose/lipids               | Phase 2         | ?              |
| Lanifibranor  | PPARα/δ/γ                | Glucose/lipids               | Phase 2         | ?              |
| Seladelpar    | ΡΡΑΒδ                    | Lipids                       | Phase 2         | ?              |
| Saroglitazar  | ΡΡΑRα/γ                  | Glucose/lipids               | Phase 2         | +?             |
| CHS-131       | $PPAR\gamma - other?$    | Glucose                      | Phase 2         | ?              |
| PXL-065       | $PPAR\gamma/\alpha-MPC?$ | ?                            | Phase 1         | ?              |

\* PROACTIVE (Lancet 2006); CHICAGO (JAMA 2007); PERISCOPE (JAMA 2008); IRIS Study (NEJM 2016; Circulation 2017; JAMA 2019). \*\* Final conclusion indicated neutral effect on CVD from RCTs by FDA in 2014.

Cusi K, unpublished 2019




# Change in hepatic fat content measured by MRI does not predict treatment-induced histological improvement of steatohepatitis with pioglitazone



Bril/Cusi et al. J Hepatology October 2019



# Change in hepatic fat content measured by MRI does not predict treatment-induced histological improvement of steatohepatitis with pioglitazone

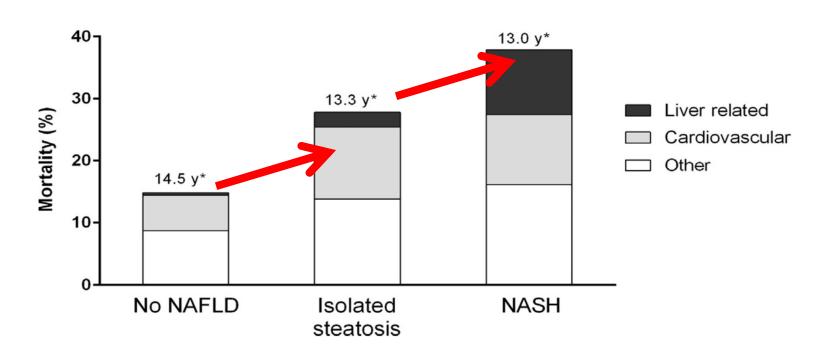




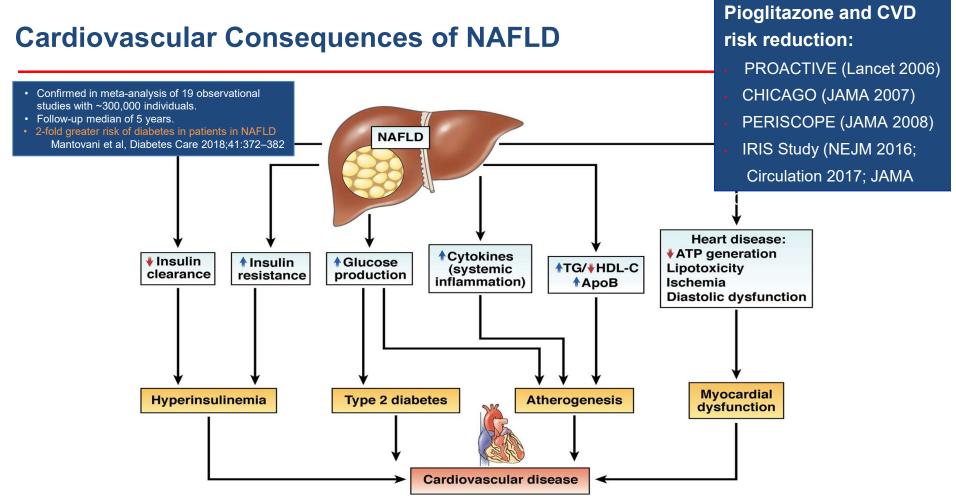
#### **Treatment of NASH: Role of PPARs**

#### 1. What is the role of the diabetologist?

- A call to action: NAFLD as a public health problem
- Looking back: Analogies to diabetic nephropathy or osteoporosis


#### 2. Treatment of NAFLD:

- Current options:
  - Weight loss, vitamin E, GLP-1RA and pioglitazone
- The future:
- New agents and combination therapy
- PPARs: Targeting NAFLD + "cardiometabolic" risk (T2DM, CVD)


CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist.



#### Mortality in Isolated Steatosis versus NASH: Cardiovascular disease as the major cause of death



Bril and Cusi. Endocrinol Metab Clin North Am 2016;45:765-81



ATP, adenosine triphosphate; HDL-C, high-density lipoprotein; TG, triglycerides.

Cusi K Gastroenterology 2012;142:711-25

#### JAMA Neurology | Original Investigation

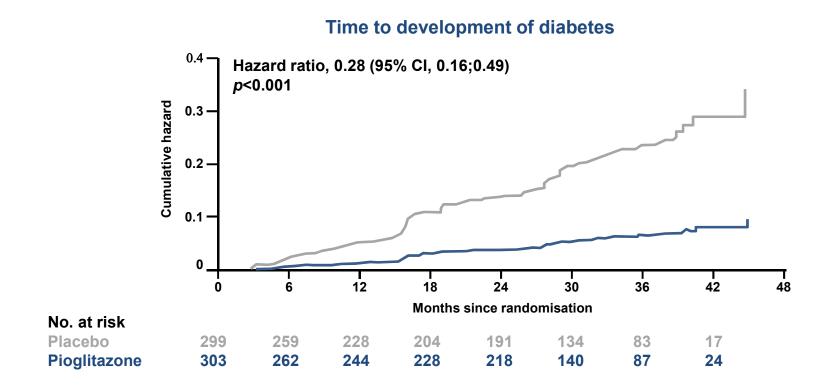


## **Pioglitazone Therapy in Patients With Stroke and Prediabetes** A Post Hoc Analysis of the IRIS Randomized Clinical Trial

J. David Spence, MD; Catherine M. Viscoli, PhD; Silvio E. Inzucchi, MD; Jennifer Dearborn-Tomazos, MD; Gary A. Ford, MB, Bchir; Mark Gorman, MD; Karen L. Furie, MD; Anne M. Lovejoy, PA-C; Lawrence H. Young, MD; Walter N. Kernan, MD; for the IRIS Investigators

| Variable                     | Hazard Ratio (95% CI) | P Value | NNT |
|------------------------------|-----------------------|---------|-----|
| Adherence ≥80%               |                       |         |     |
| Stroke/MI                    | 0.57 (0.39-0.84)      | .004    | 24  |
| Stroke                       | 0.64 (0.42-0.99)      | .04     | 39  |
| Acute coronary syndrome      | 0.47 (0.26-0.85)      | .01     | 40  |
| Stroke/MI/HF hospitalization | 0.61 (0.42-0.88)      | .008    | 26  |
| New-onset diabetes           | 0.18 (0.10-0.33)      | <.001   | 12  |
| Intention to treat           |                       |         |     |
| Stroke/MI                    | 0.70 (0.56-0.88)      | .002    | 28  |
| Stroke                       | 0.72 (0.56-0.93)      | .01     | 39  |
| Acute coronary syndrome      | 0.72 (0.52-1.00)      | .052    | 62  |
| Stroke/MI/HF hospitalization | 0.78 (0.63-0.96)      | .02     | 34  |
| New-onset diabetes           | 0.46 (0.35-0.61)      | <.001   | 19  |

Table 2. Hazard Ratios in Cox Regression for On-Treatment and Intention-to-Treat Analyses


**CONCLUSIONS AND RELEVANCE** Pioglitazone may be effective for secondary prevention in patients with stroke/transient ischemic attack and with prediabetes, particularly in those with good adherence.

CI, confidence interval; HF, heart failure; MI, myocardial infarction; NNT, number needed to treat.

Spence et al. JAMA Neurol 2019;76:526-35



#### **ACT NOW: prevention of T2DM**



CI, confidence interval.

DeFronzo et al. N Engl J Med 2011;364:1104-11, 2011



#### **PPARs to Address the Unmet Medical Need in NASH**

#### 1. Role of the PCP and endocrinologist expanding

- We are at the dawn of incorporating NASH in the risk assessment of obesity and T2DM
- ADA: asking for routine early diagnosis and treatment

#### 2. Treatment

- Many new agents in the pipeline
- PPARs offer a great opportunity to tackle a major driving force in NASH (IR, lipotoxicity) while significantly ameliorating cardiometabolic risk
- Combination therapy will be the standard of care in the future (PPARs + ?)
- Best combination unclear ("upstream" + "downstream" combo?)





# Q&A Session

