# An HPLC-UV Method Supporting the Reactivity Assessment of an IVA Acyl-Glucuronide Derivative



Emmanuel Hardillier<sup>1</sup>, Béatrice Cautain<sup>1</sup>, Delphine Chevillon<sup>2</sup>, Colette Prevost<sup>2</sup>, Olivier Lacombe<sup>1</sup> <sup>1</sup> INVENTIVA - 50 rue de Dijon - 21121 Daix, France ; <sup>2</sup> Laboratoires Fournier - 50 rue de Dijon - 21121 Daix, France

Contact: olivier.lacombe@inventivapharma.com

## ABSTRACT

**Introduction:** An important route of carboxylic acid metabolism is glucurono-conjugation yielding to the 1-O- $\beta$ -acyl-glucuronide derivative. This is unstable at physiological and alkaline pH, undergoing with different rates 1.) intramolecular rearrangement leading to acyl-isomers, 2.) hydrolysis with release of the parent drug, 3.) adduct formation with tissues and plasma proteins leading to potential toxicity (i.e. hepatic toxicities, autoimmune responses). It was described that the covalent binding extent could be correlated with the 1-O- $\beta$ -acyl-glucuronide global degradation rate: a short half-life (<1.5h) associated with a main acyl-migration is considered as a marker for more reactive acyl-glucuronides than those with long half-lives.

**Objective:** The 1-O- $\beta$ -acyl-glucuronide degradation can only be demonstrated with a fine chromatography method ensuring the separation to its acyl-isomers and parent. This represents a challenge because of their very similar chemical structures. The aim of the study was to develop an HPLC-UV analytical method to assess the *in vitro* acyl-glucuronide degradation of the IVA compound (an Inventiva clinical drug candidate).

**Method and Results:** 1-O- $\beta$ -acyl-glucuronide incubations (Phosphate buffer 0.1M pH7.4) were stopped at several time-points by a 2-fold dilution with acetonitrile / 1% HCOOH. 20µL were injected on a column XTerra MSC18, 150 x 3mm, 3.5µm. Separation of the 1-O- $\beta$ -acyl-glucuronide, each of its three isomers and the parent was obtained with a gradient method from 80:20 to 10:90 (A: [Ammonium acetate 5mM / HCOOH 1%] – B: [Acetonitrile / HCOOH 1%]), for 18 minutes with a UV detection at 260nm, leading to retention times of 13.2, 11.4, 12.7, 13.6 and 16.1 minutes, respectively. Linearity was demonstrated from 0.6 to 60µM for the 1-O- $\beta$ -acyl-glucuronide and its parent. A similar UV-response was assumed for each isomer due to the lack of available standards.

Method developments were also performed for acyl-glucuronide derivatives of known references (diclofenac, (S)-ibuprofen, indomethacin) used for ranking of the IVA 1-O-β-acyl-glucuronide reactivity.

#### **OBJECTIVES**

#### ABBREVIATIONS

|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | ADDILLIATION                                                                      |                                                                                                                                        |               |                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
| The 1-O-β-acyl-glucuronide degradation can only be demonstrated with a fine chromatography method ensuring the separation to its acyl-isomers and parent. This represents a challenge because of their very similar chemical structures. The aim of the study was to develop an HPLC-UV analytical method to assess the <i>in vitro</i> acyl-glucuronide degradation of an IVA compound (an Inventiva clinical drug candidate). | °C<br>µL<br>µm<br>a<br>ACN<br>b | degree Celsius<br>micro liter<br>micrometer<br>slope<br>acetonitrile<br>intercept | $H_2O$ waterHCOOH formic acidHPLChigh-performance liquid chromatography $KH_2PO_4$ monopotassium phosphateKOHpotassium hydroxideLliter | nm<br>pH<br>s | milliliter<br>millimeter<br>nanometer<br>second<br>upper limit of quantitation |
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                          | DS<br>g<br>h                    | dilution solvent<br>gram<br>hour                                                  | LLOQ lower limit of quantitation<br>M molar<br>min minute                                                                              | UV<br>v       | ultraviolet<br>volume                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                                   |                                                                                                                                        |               |                                                                                |

The IVA 1-O- $\beta$ -acyl-glucuronide was incubated at 37°C, in KH<sub>2</sub>PO<sub>4</sub> buffer. At each incubation time, samples were analyzed with an HPLC and UV detection method.

The IVA 1-O- $\beta$ -acyl-glucuronide global degradation rate was calculated from the decreased IVA 1-O- $\beta$ -acyl-glucuronide concentrations with time of incubation. IVA 1-O- $\beta$ -acyl-glucuronide hydrolysis rate was calculated from IVA formed with time of incubation and IVA 1-O- $\beta$ -acyl-glucuronide isomerisation rate was assessed by quantification of each IVA acyl-glucuronide isomer formed with time of incubation. 1-O- $\beta$ -acyl-glucuronide incubations (Phosphate buffer 0.1 M pH7.4) were stopped at several time-points by a 2-fold dilution with acetonitrile / 1% HCOOH. 20µL were injected on a column XTerra MSC18, 150 x 3 mm, 3.5 µm. Separation of the 1-O- $\beta$ -acyl-glucuronide, each of its three isomers and the parent was obtained with a gradient method from 80:20 to 10:90 (A: [Ammonium acetate 5 mM / HCOOH 1%] – B: [Acetonitrile / HCOOH 1%]), for 18 minutes with an UV detection at 260 nm.

**Equipment:** 

| Instrument           |                | Туре                             |          |  |
|----------------------|----------------|----------------------------------|----------|--|
| Autosampler          | SI             | SIL-20AC                         |          |  |
| HPLC-pump            | L              | LC20AD                           |          |  |
| Column oven          | C              | CT0 20AC                         |          |  |
| UV detector          | S              | SPD20A                           |          |  |
| Analytical Column    | XTerra MSC18   | XTerra MSC18, 150 x 3 mm, 3.5 μm |          |  |
| Chromatographic cond | itions:        |                                  |          |  |
| Time                 | Mobile Phase A | Mobile Phase B                   | Flow     |  |
| (min)                | (%)            | (%)                              | (mL/min) |  |
| 0                    | 80             | 20                               |          |  |
| 12                   | 60             | 40                               |          |  |
| 14                   | 10             | 90                               | 0.5      |  |
| 10                   | 10             | 10                               |          |  |

**Preparation of solvents:** 

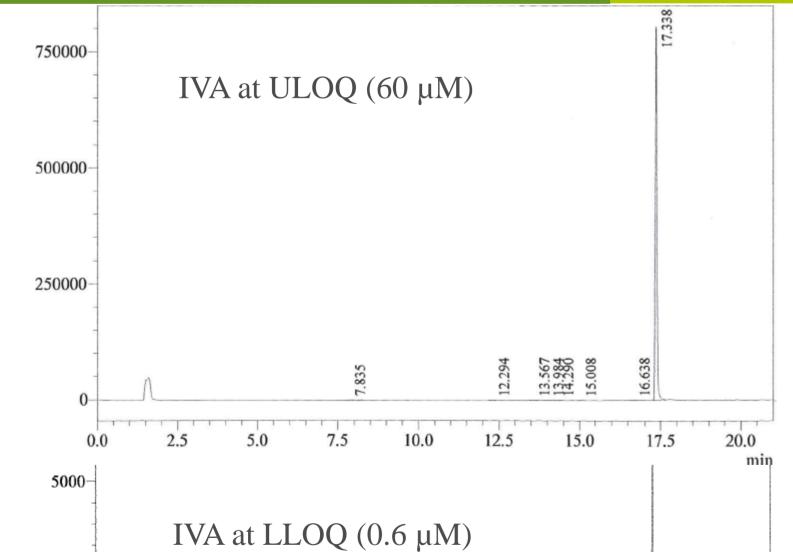
| Solvent                       | Preparation                                                                                                                                                  |                  |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Ammonium acetate buffer 1 M   | Weigh accurately 77.08 g of ammonium acetate into a 1000 mL<br>volumetric flask. Bring to volume with water. (Store at room temperature<br>for up to 1 year) |                  |  |
| Solvent A                     | Ammonium acetate 5 mM/HCOOH(                                                                                                                                 | 99.99:0.01; v/v) |  |
|                               | Ammonium acetate b                                                                                                                                           | uffer 1 M 5 mL   |  |
|                               | HCOOH                                                                                                                                                        | 100 µL           |  |
|                               | $H_2O$                                                                                                                                                       | up to 1 L        |  |
| Solvent B                     | Acetonitrile/HCOOH(99.99:0.01; v/                                                                                                                            | v)               |  |
|                               | HCOOH                                                                                                                                                        | 100 µL           |  |
|                               | ACN                                                                                                                                                          | up to 1 L        |  |
| Mobile Phase A                | Solvent A / Solvent B (95:5; v/v)                                                                                                                            |                  |  |
| Mobile Phase B                | Solvent A / Solvent B (5:95; v/v)                                                                                                                            |                  |  |
| Dilution solvent = DS         | $(Acetonitrile + 0.1\% HCOOH)/(H_2O + 0.1\% HCOOH)(50:50; v/v)$                                                                                              |                  |  |
| Rinsing solvent (autosampler) | Methanol/water (50:50; v/v)                                                                                                                                  |                  |  |
| Tris buffer pH 7.4            | Weigh 15.76 g of Trizma hydrochlorid                                                                                                                         |                  |  |

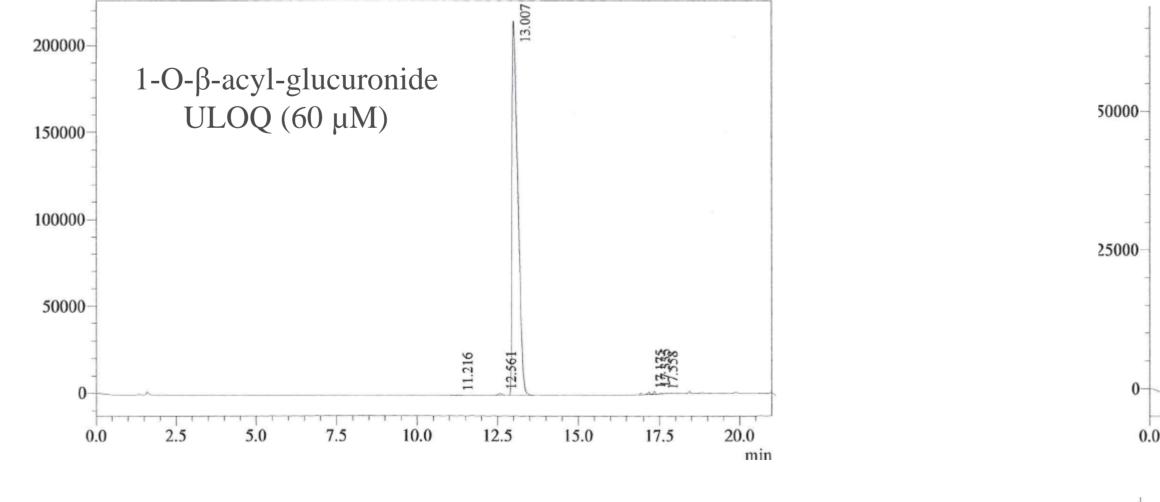
| 18.5                   | 80 |          | 20 |                 |
|------------------------|----|----------|----|-----------------|
| 21                     | 80 |          | 20 |                 |
| Acquisition time (min) |    |          | 21 | 1               |
| Temperature (°C)       |    | Oven: 45 |    | Autosampler: 10 |
| Injection volume (µl)  |    |          | 20 | )               |
| UV wavelength (nm)     |    |          | 26 | 0               |

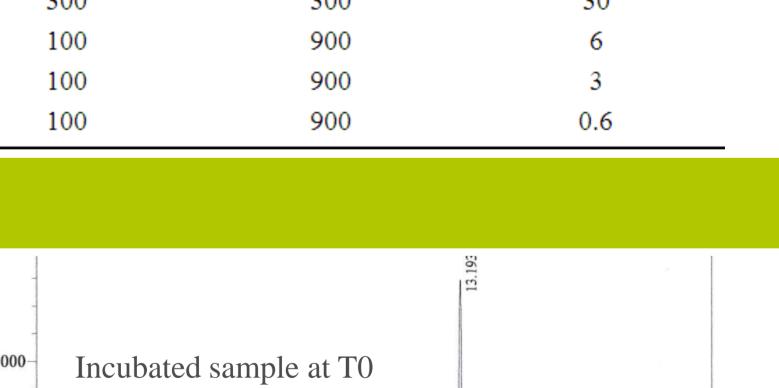
90

#### Sample treatment:

18


Samples were diluted with acidified acetonitrile before analysis:


10


 $300 \ \mu$ L of ACN + 1% HCOOH were added directly into the tubes containing the sample. Samples were vortexed for 10 s and then were transferred into the vials for injection onto the chromatographic system. **Data evaluation:** 

The calibration curves were calculated from the peak area of analyte and the nominal analyte concentrations using a linear regression y = a + bx with  $1/x^2$  weighting.

### RESULTS







1.361

12.5

15.0

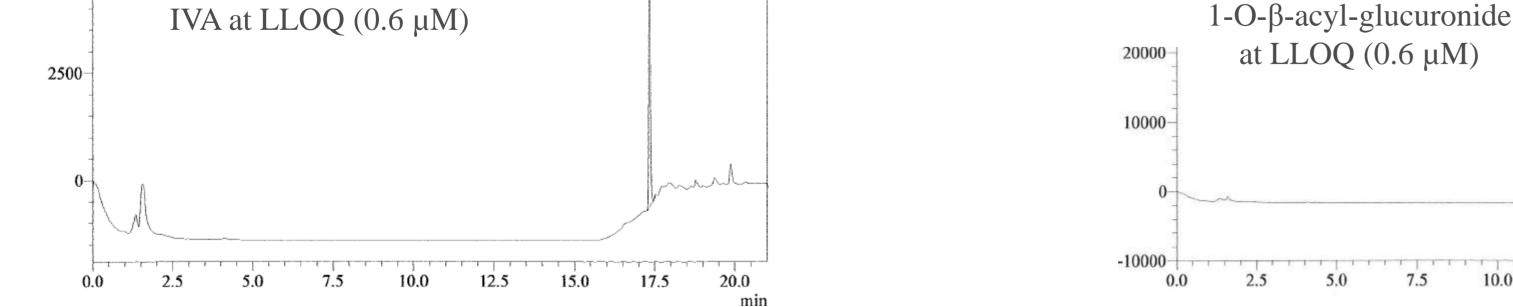
17.5

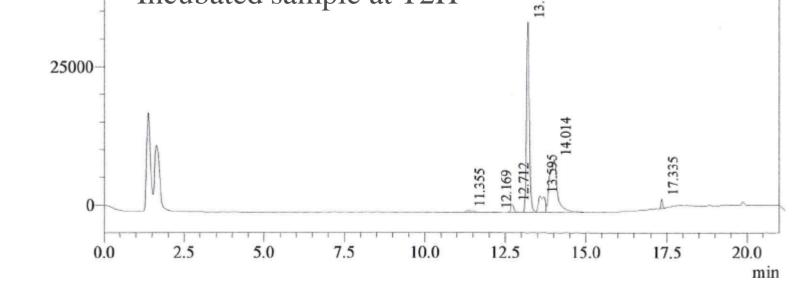
20.0

Incubated sample at T2H

7.5

5.0


2.5


Add 800 ml of purified water and adjust pH at 7.4 with NaOH 2N.Then complete to 1000 ml with purified water

Phosphate buffer 0.1 M pH 7.4Weigh 6.805 g of KH2PO4 into a 500 ml volumetric flask. Add 400 ml of<br/>purified water and adjust pH at 7.4 with KOH 1 M. Then complete to<br/>500 ml with purified water.

#### Calibration samples preparation:

| Calibration Level | Solution Used | Volume<br>Taken<br>[µL] | Volume of DS<br>Solvent Added<br>[µL] | Final<br>Concentration<br>[µM] |
|-------------------|---------------|-------------------------|---------------------------------------|--------------------------------|
| ST5               | SMG           | 300                     | 700                                   | 60                             |
| ST4               | ST5           | 300                     | 300                                   | 30                             |
| ST3               | ST5           | 100                     | 900                                   | 6                              |
| ST2               | ST4           | 100                     | 900                                   | 3                              |
| ST1               | ST3           | 100                     | 900                                   | 0.6                            |



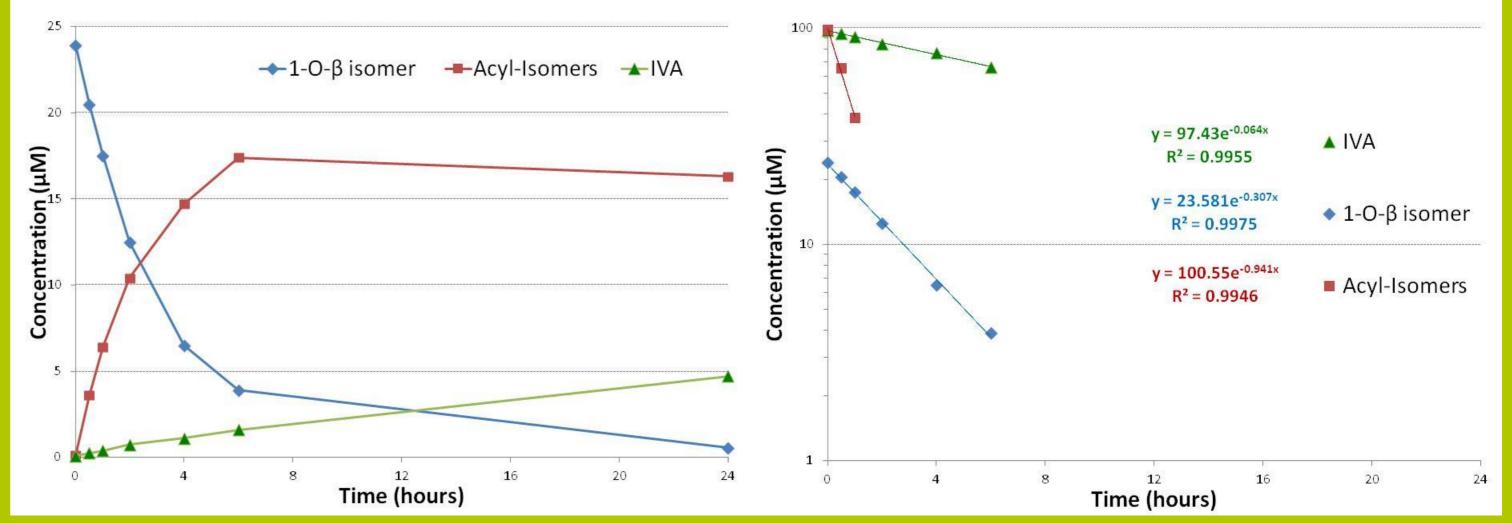


10.0

## DISCUSSION

An HPLC-UV analytical method was developped to assess the *in vitro* acyl-glucuronide degradation of the IVA compound (an Inventiva clinical drug candidate).

Separation of the 1-O- $\beta$ -acyl-glucuronide, each of its three isomers and the parent was obtained, leading to retention times of 13.2, 11.4, 12.7, 13.6 and 16.1 minutes, respectively.


Linearity was demonstrated from 0.6 to 60  $\mu$ M for the 1-O- $\beta$ -acyl-glucuronide and its parent.

The *in vitro* intrinsic reactivity of the IVA acyl-glucuronide was therefore assessed by determining the global degradation rate in Phosphate buffer 0.1 M pH 7.4.

By comparison, the IVA acyl-glucuronide global degradation rate of ~2.4h was longer than the cut-off of 1.5 h proposed in the literature, and ranked between indomethacin acyl-glucuronide (1.7 h) and (S)-ibuprofen acyl-glucuronide (3.7 h) which are not known to be reactive *in vivo*.

Those observations lead to the conclusion that IVA acyl-glucuronide is not likely to react with proteins.

Kinetics of 1-O-β-acyl-glucuronide globaldegradation, hydrolysis and acyl migration:

